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Introduction

Fundamental Problem

RAM does not capture memory access complexity

Computational complexity is not enough on actual machines

Strategy

Machine models (memory and processor)

Algorithmic techniques

Questions

What can be imported from other settings/contexts?

Is it possible/convenient to exploit parallelism in a scalar
setting?
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Models and Algorithms

Two major strategies to cope with latency:

Temporal/Spatial Locality

⇒ Hierarchical Memories, Block Transfer

⇒ Memory access function a(x)

Concurrency

⇒ Pipelined Memories

⇒ Constant access request rate
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Memory Models

latency

RAM with latency

Hierarchical
Memory

Pipelined
Memory

Pipelined
Hierarchical
Memory
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Speculative Prefetcher and Evaluator
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Speculative Prefetcher and Evaluator

Instructions are executed in segments of variable size
(segmentsize())

No slow down because of data dependencies. . .

. . . or even O(1) address dependence depth

Enhancements such as dynamic loop unrolling and branch
prediction are allowed
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Parallel Random Access Machine
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Parallel Random Access Machine

Many equivalent flavours: SIMD, MIMD. . .

The actual difference is in how shared memory is managed:

EREW: exclusive read, exclusive write

CREW: concurrent read, exclusive write

CRCW: concurrent read, concurrent write (contention policy)
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Work-Time Framework

Parallel Programming Model which targets PRAMs

pardo statement defines parallel steps

sets s1, . . . , sT of instructions on M cells of memory

in general, each si has a different size pi
Time T ; Work W =

∑T
i=1 pi

Easily schedulable on PRAM: O(W /P + T )

WT Model
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Exploiting Parallelism

PRAM to Disk Model
Chiang, Y., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E.,

Vitter, J. S.: External-Memory Graph Algorithms. SODA ’95

D-BSP to Hierarchical Memory
Fantozzi, C., Pietracaprina, A. A., Pucci, G.: Translating Submachine

Locality into Locality of Reference. Journal of Parallel and Distributed

Computing 66

PRAM to Pipelined Memory
Luccio, F., and Pagli, L.: A model of sequential computation with

pipelined access to memory. Math. Syst. Theory 26
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Our Work

Parallel model: Work-Time Framework

Sequential model: SPE

A general technique for implementing WT Algorithms on SPE

Large classes of optimal SPE programs

Novelty

Explicitly refer to a feature of problems: available parallelism

Target physically implementable machines, not bound to a
particular memory access function
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WT Simulation - Single Step

Simulation of parallel step i (exclusive write)

WT

for j , 1 ≤ j ≤ p pardo

operationj

SPE

segmentsize(min(k, p))
for j , 1 ≤ j ≤ p do

instructionsj

Program size: O(1)

∆ Space: O(pi )

Time: O(p + a(M i
SPE ))
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WT Simulation - Single Step

Program size does not depend on input size

⇒ negligible instruction load latency

Data memory use may increase by up to pi

⇒ heavily depends on the WT algorithm

⇒ degree of memory reuse

⇒ amount of output produced

Memory accesses fully overlap

⇒ proportional to pi and a(M i
SPE )
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WT Simulation - Concurrent Write

Different solutions, depending on the concurrent write policy:

priority policy → predicated instructions

associative op. policy → accumulation

segmentsize(min(k, p))
for j , 1 ≤ j ≤ p do

instructionsj
acc ← max{acc; outputj}

Also an if(test) statement can be used. . .
. . . when the test is simple enough!
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WT Simulation - Whole Algorithm

Total space complexity: MPH = O(n + W )

Total time complexity: O(W + T · a(MPH))

Optimal SPE programs if

Work–optimal WT algorithms

The average parallelism is larger than worst case latency
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Merge

Problem: merging 2 sorted lists of n elements.

Kruskal algorithm: T = O(log n), W = O(n)

⇒ TSPE = O(W + T · a(M)) = O(n + log n · a(n))

linear for a(x) = xα, 0 < α < 1, a(x) = log x .

On other hierarchical models:

O(n log n) if a(x) = xα, 0 < α < 1

O(n log∗ n) if a(x) = log x
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MergeSort

Problem: sorting a list of n elements.

Warning

Merge is linear only if the input is in the fastest O(n) locations.

Solution

When merge istances are too small wrt latency, execute them in an
interleaved fashion.
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Non–local Matrix Multiplication

Problem: multiplying 2 n × n matrices.

The notorious WT algorithm has T = O(log n), W = O(n3)

⇒ TSPE = O(W + T · a(M)) = O(n3 + log n · a(n3))

Optimal even if no locality is exploited

Space complexity

O(n3) memory is required!
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Conclusions

Parallelism is a viable strategy for overlapping accesses

Large memory footprint, if too much parallelism

Future Work

Integration with locality exploitation

Exploitation of coarse grained parallelism (D-BSP)
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Thank you!

Thank you for your attention!

. . . questions?
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