

Department of Information Engineering University of Padova

Exploiting Fine Grained Parallelism in SPE

E. Milani N. Zago

ICTCS, Varese, September 21st, 2012

Table of contents

1 Introduction

- 2 Background and Previous Work
 - Models
 - Previous Work
 - Our Work
- **3** WT Implementation on SPE
 - Single Step
 - Whole Algorithm
 - Applications

Introduction

Fundamental Problem

- RAM does not capture memory access complexity
- Computational complexity is not enough on actual machines

Strategy

- Machine models (memory and processor)
- Algorithmic techniques

Questions

- What can be imported from other settings/contexts?
- Is it possible/convenient to exploit parallelism in a scalar setting?

Models Previous Work Our Work

Models and Algorithms

Two major strategies to cope with latency:

• Temporal/Spatial Locality

Concurrency

Models Previous Work Our Work

Models and Algorithms

Two major strategies to cope with latency:

- Temporal/Spatial Locality
 - \Rightarrow Hierarchical Memories, Block Transfer

- Concurrency
 - \Rightarrow Pipelined Memories

Models Previous Work Our Work

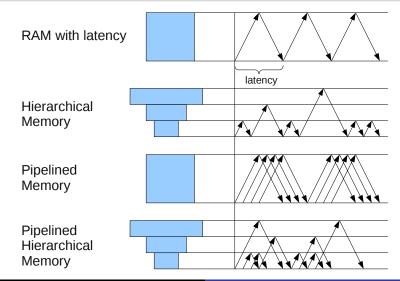
Models and Algorithms

Two major strategies to cope with latency:

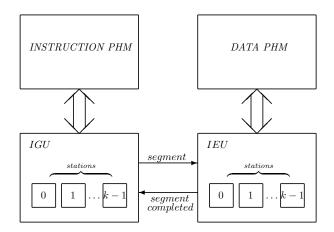
- Temporal/Spatial Locality
 - \Rightarrow Hierarchical Memories, Block Transfer
 - \Rightarrow Memory access function a(x)
- Concurrency
 - \Rightarrow Pipelined Memories
 - \Rightarrow Constant access request rate

Models Previous Work Our Work

Memory Models



Models Previous Work Our Work



Models Previous Work Our Work

Speculative Prefetcher and Evaluator

 Instructions are executed in segments of variable size (segmentsize())

Models Previous Work Our Work

- Instructions are executed in segments of variable size (segmentsize())
- No slow down because of data dependencies. . .

Models Previous Work Our Work

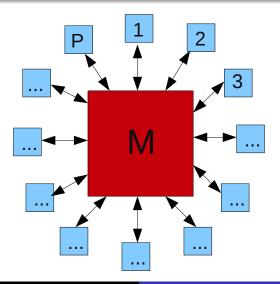
- Instructions are executed in segments of variable size (segmentsize())
- No slow down because of data dependencies. . .
- ... or even O(1) address dependence depth

Models Previous Work Our Work

- Instructions are executed in segments of variable size (segmentsize())
- No slow down because of data dependencies. . .
- ... or even O(1) address dependence depth
- Enhancements such as dynamic loop unrolling and branch prediction are allowed

Models Previous Work Our Work

Parallel Random Access Machine



Models Previous Work Our Work

Parallel Random Access Machine

Many equivalent flavours: SIMD, MIMD...

The actual difference is in how shared memory is managed:

- EREW: exclusive read, exclusive write
- CREW: concurrent read, exclusive write
- CRCW: concurrent read, concurrent write (contention policy)

Models Previous Work Our Work

Work-Time Framework

• Parallel Programming Model which targets PRAMs

Models Previous Work Our Work

- Parallel Programming Model which targets PRAMs
- pardo statement defines parallel steps

Models Previous Work Our Work

- Parallel Programming Model which targets PRAMs
- pardo statement defines parallel steps
- sets s_1, \ldots, s_T of instructions on M cells of memory

Models Previous Work Our Work

- Parallel Programming Model which targets PRAMs
- pardo statement defines parallel steps
- sets s_1, \ldots, s_T of instructions on M cells of memory
- in general, each s_i has a different size p_i

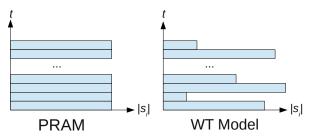
Models Previous Work Our Work

- Parallel Programming Model which targets PRAMs
- pardo statement defines parallel steps
- sets s_1, \ldots, s_T of instructions on M cells of memory
- in general, each s_i has a different size p_i

• Time T; Work
$$W = \sum_{i=1}^{T} p_i$$

Models Previous Work Our Work

- Parallel Programming Model which targets PRAMs
- pardo statement defines parallel steps
- sets s_1, \ldots, s_T of instructions on M cells of memory
- in general, each s_i has a different size p_i
- Time T; Work $W = \sum_{i=1}^{T} p_i$
- Easily schedulable on PRAM: O(W/P + T)



Models Previous Work Our Work

Exploiting Parallelism

PRAM to Disk Model

Chiang, Y., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E.,

Vitter, J. S.: External-Memory Graph Algorithms. SODA '95

 D-BSP to Hierarchical Memory Fantozzi, C., Pietracaprina, A. A., Pucci, G.: Translating Submachine Locality into Locality of Reference. *Journal of Parallel and Distributed Computing 66*

Models Previous Work Our Work

Exploiting Parallelism

PRAM to Disk Model

Chiang, Y., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E.,

Vitter, J. S.: External-Memory Graph Algorithms. SODA '95

- D-BSP to Hierarchical Memory Fantozzi, C., Pietracaprina, A. A., Pucci, G.: Translating Submachine Locality into Locality of Reference. *Journal of Parallel and Distributed Computing 66*
- PRAM to Pipelined Memory Luccio, F., and Pagli, L.: A model of sequential computation with pipelined access to memory. *Math. Syst. Theory 26*

Models Previous Work Our Work

Our Work

Our Work

- Parallel model: Work-Time Framework
- Sequential model: SPE
- A general technique for implementing WT Algorithms on SPE
- Large classes of optimal SPE programs

Novelty

- Explicitly refer to a feature of problems: available parallelism
- Target physically implementable machines, not bound to a particular memory access function

Single Step Whole Algorithm Applications

WT Simulation - Single Step

Simulation of parallel step *i* (exclusive write)

WT

 $\begin{array}{c} \text{for } j, 1 \leq j \leq p \text{ pardo} \\ \text{operation}_j \end{array}$

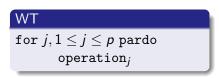
SPE

 $\begin{array}{ll} \text{segmentsize}\,(\min(k,\ p))\\ \text{for}\,j,1\leq j\leq p\;\text{do}\\ & \text{instructions}_j \end{array}$

Single Step Whole Algorithm Applications

WT Simulation - Single Step

Simulation of parallel step *i* (exclusive write)



SPE

 $\begin{array}{ll} \text{segmentsize}(\min(k, p)) \\ \text{for } j, 1 \leq j \leq p \text{ do} \\ & \text{instructions}_j \end{array}$

- Program size: O(1)
- Δ Space: $O(p_i)$
- Time: $O(p + a(M_{SPE}^i))$

Single Step Whole Algorithm Applications

WT Simulation - Single Step

• Program size does not depend on input size

Single Step Whole Algorithm Applications

WT Simulation - Single Step

• Program size does not depend on input size

 \Rightarrow negligible instruction load latency

Single Step Whole Algorithm Applications

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i

Single Step Whole Algorithm Applications

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i
 ⇒ heavily depends on the WT algorithm

Single Step Whole Algorithm Applications

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i
 - \Rightarrow heavily depends on the WT algorithm
 - \Rightarrow degree of memory reuse

Single Step Whole Algorithm Applications

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i
 - \Rightarrow heavily depends on the WT algorithm
 - \Rightarrow degree of memory reuse
 - \Rightarrow amount of output produced

Single Step Whole Algorithm Applications

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i
 - \Rightarrow heavily depends on the WT algorithm
 - \Rightarrow degree of memory reuse
 - \Rightarrow amount of output produced
- Memory accesses fully overlap

Single Step Whole Algorithm Applications

WT Simulation - Single Step

- Program size does not depend on input size
 ⇒ negligible instruction load latency
- Data memory use may increase by up to p_i
 - \Rightarrow heavily depends on the WT algorithm
 - \Rightarrow degree of memory reuse
 - \Rightarrow amount of output produced
- Memory accesses fully overlap

 \Rightarrow proportional to p_i and $a(M_{SPE}^i)$

Single Step Whole Algorithm Applications

WT Simulation - Concurrent Write

Different solutions, depending on the concurrent write policy:

- priority policy \rightarrow predicated instructions
- associative op. policy \rightarrow accumulation

```
\begin{array}{ll} \text{segmentsize}(\min(k, p)) \\ \text{for } j, 1 \leq j \leq p \text{ do} \\ & \text{instructions}_j \\ & acc \leftarrow \max\{acc; output_j\} \end{array}
```

• Also an if(test) statement can be used... ...when the test is simple enough!

Single Step Whole Algorithm Applications

WT Simulation - Whole Algorithm

E. Milani, N. Zago Exploiting Fine Grained Parallelism in SPE

Single Step Whole Algorithm Applications

WT Simulation - Whole Algorithm

• Total space complexity: $M_{PH} = O(n + W)$

Single Step Whole Algorithm Applications

WT Simulation - Whole Algorithm

- Total space complexity: $M_{PH} = O(n+W)$
- Total time complexity: $O(W + T \cdot a(M_{PH}))$

Single Step Whole Algorithm Applications

WT Simulation - Whole Algorithm

- Total space complexity: $M_{PH} = O(n+W)$
- Total time complexity: $O(W + T \cdot a(M_{PH}))$

Optimal SPE programs if

- Work–optimal WT algorithms
- The average parallelism is larger than worst case latency

Single Step Whole Algorithm Applications

Merge

Problem: merging 2 sorted lists of *n* elements.

• Kruskal algorithm: $T = O(\log n)$, W = O(n)

Single Step Whole Algorithm Applications

Merge

Problem: merging 2 sorted lists of *n* elements.

- Kruskal algorithm: $T = O(\log n)$, W = O(n)
- \Rightarrow $T_{SPE} = O(W + T \cdot a(M)) = O(n + \log n \cdot a(n))$

Single Step Whole Algorithm Applications

Merge

Problem: merging 2 sorted lists of *n* elements.

• Kruskal algorithm: $T = O(\log n)$, W = O(n)

•
$$\Rightarrow$$
 $T_{SPE} = O(W + T \cdot a(M)) = O(n + \log n \cdot a(n))$

• linear for $a(x) = x^{\alpha}, 0 < \alpha < 1$, $a(x) = \log x$.

On other hierarchical models:

- $O(n \log n)$ if $a(x) = x^{\alpha}, 0 < \alpha < 1$
- $O(n \log^* n)$ if $a(x) = \log x$

Single Step Whole Algorithm Applications

MergeSort

Problem: sorting a list of *n* **elements.**

Warning

Merge is linear only if the input is in the fastest O(n) locations.

Solution

When merge istances are too small wrt latency, execute them in an interleaved fashion.

Single Step Whole Algorithm Applications

Non–local Matrix Multiplication

Problem: multiplying 2 $n \times n$ matrices.

E. Milani, N. Zago Exploiting Fine Grained Parallelism in SPE

Single Step Whole Algorithm Applications

Non–local Matrix Multiplication

Problem: multiplying 2 $n \times n$ matrices.

• The notorious WT algorithm has $T = O(\log n)$, $W = O(n^3)$

Single Step Whole Algorithm Applications

Non–local Matrix Multiplication

Problem: multiplying 2 $n \times n$ matrices.

- The notorious WT algorithm has $T = O(\log n)$, $W = O(n^3)$
- \Rightarrow $T_{SPE} = O(W + T \cdot a(M)) = O(n^3 + \log n \cdot a(n^3))$

Single Step Whole Algorithm Applications

Non–local Matrix Multiplication

Problem: multiplying 2 $n \times n$ matrices.

- The notorious WT algorithm has $T = O(\log n)$, $W = O(n^3)$
- \Rightarrow $T_{SPE} = O(W + T \cdot a(M)) = O(n^3 + \log n \cdot a(n^3))$
- Optimal even if no locality is exploited

Single Step Whole Algorithm Applications

Non–local Matrix Multiplication

Problem: multiplying 2 $n \times n$ matrices.

- The notorious WT algorithm has $T = O(\log n)$, $W = O(n^3)$
- \Rightarrow $T_{SPE} = O(W + T \cdot a(M)) = O(n^3 + \log n \cdot a(n^3))$
- Optimal even if no locality is exploited

Space complexity

 $O(n^3)$ memory is required!

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Parallelism is a viable strategy for overlapping accesses
- Large memory footprint, if too much parallelism

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Parallelism is a viable strategy for overlapping accesses
- Large memory footprint, if too much parallelism

Future Work

- Integration with locality exploitation
- Exploitation of *coarse grained* parallelism (D-BSP)

Thank you!

Conclusions and Future Work

Thank you for your attention!

... questions?