Time Modalities over Many-valued Logics

Achille Frigeri

Dipartimento di Matematica "Francesco Brioschi" Politecnico di Milano

joint work with Nicholas Fiorentini, Liliana Pasquale, and Paola Spoletini

September 19, 2012

- Introduction

 Fuzzy Logic is a logical system which is an extension of multivalued logic and is intended to serve, as a logic of approximate reasoning

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction

Fuzzy Logic vs. Probability

Fuzzy logic

- It deals with not measurable events
- The definition of the considered events is vague
- Ex.: Tomorrow will be cold

Probability

- It deals with observable events whose occurrence is uncertain
- Ex.: Tomorrow the temperature will be 10°C at 12:00

A (10) > A (10) > A (10)

From crisp to fuzzy connectives

The semantics of existing fuzzy temporal operators is based on the idea of replacing classical connectives or propositions with their fuzzy counterparts.

 Fuzzy LTL (FLTL) [Lamine, Kabanza]: LTL in which Boolean operators are interpreted as in Zadeh interpretation

Do not allow to represent additional temporal properties, such as almost always, soon.

From fuzzy connectives to fuzzy modalities

Introduction of proper fuzzy temporal operators to represent short/long time distance in which a specific property must be satisfied

- Lukasiewicz TL (FLTL) [Thiele, Kalenka]:
 - LTL with short/medium/long term operators

No specific fuzzy semantics for temporal modalities: depend on the interpretation given to a (sub-)argument, which is an untimed fuzzy formula.

FTL: Fuzzy Time modalities in LTL

- We want to add temporal modalities such as "often", "soon", etc. This kind of modalities may be useful when we need to specify situations when a formula is slightly satisfied, since an event happens a little bit later than expected, when a property is always satisfied except for a small set of time instants, or a property is maintained for a time interval which is slightly smaller than the one.
- The underlying logic is a *t*-norm based logic.

A (10) A (10) A (10)

t-norm/conorm, implication & negation

	boundary value	commutativity		associativity	monotonicity
negation	$\begin{array}{l} \ominus 0 = 1 \\ \ominus 1 = 0 \end{array}$	-		-	$\alpha \leq \beta \Rightarrow \ominus \alpha \geq \ominus \beta$
t-norm	$\begin{array}{l} \alpha \otimes 0 = 0 \\ \alpha \otimes 1 = \alpha \end{array}$	yes		yes	$\begin{array}{c} \beta \geq \gamma \Rightarrow \alpha \otimes \beta \geq \alpha \otimes \gamma \\ \alpha \otimes \beta \leq \alpha \end{array}$
t-conorm	$\begin{array}{c} \alpha \oplus 0 = \alpha \\ \alpha \oplus 1 = 1 \end{array}$	yes		yes	$\begin{array}{c} \beta \geq \gamma \Rightarrow \alpha \oplus \beta \geq \alpha \oplus \gamma \\ \alpha \oplus \beta \geq \alpha \end{array}$
implication	$1 \bigotimes \beta = \beta$ $0 \bigotimes \beta = \alpha \bigotimes 1 = 1$ $\alpha \bigotimes 0 = \ominus \alpha$	no		no	$\begin{array}{l} \alpha \leq \beta \Rightarrow \alpha \otimes \gamma \geq \beta \otimes \gamma \\ \beta \leq \gamma \Rightarrow \alpha \otimes \beta \leq \alpha \otimes \gamma \\ \alpha \otimes \beta \geq \max\{\ominus \alpha, \beta\} \end{array}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Zadeh logic & t-norm based logics

	Zadeh	Gödel-Dummett	Łukasiewicz Product	
$\ominus lpha$	$1 - \alpha$	$\left \begin{array}{cc} 1, & \alpha = 0\\ 0, & \alpha > 0 \end{array}\right.$	$\begin{vmatrix} & 1-\alpha & \\ & 1 & \alpha = 0 \\ 0, & \alpha > 0 \end{vmatrix}$	
$lpha\otimeseta$	$\min\{\alpha,\beta\}$	$ \min\{\alpha, \beta\}$	$\mid \max\{lpha+eta-1,0\} \mid lpha \cdot eta$	
$lpha\opluseta$	$\max\{\alpha,\beta\}$	$ \max\{\alpha, \beta\}$	$ \min\{\alpha + \beta, 1\} \alpha + \beta - \alpha \cdot \beta$	
$\alpha \oslash \beta$	$\max\{1 - \alpha, \beta\}$	$\left \begin{array}{cc} 1, & \alpha \leq \beta \\ \beta, & \alpha > \beta \end{array}\right $	$\left \begin{array}{c} \min\{1-\alpha+\beta,1\} \end{array} \right \left\{ \begin{array}{c} 1, & \alpha \leq \beta \\ \beta/\alpha, & \alpha > \beta \end{array} \right.$	3 3

Time Modalities over Many-valued Logics

-Fuzzyfication

Syntax

$$\varphi := p \mid \neg \varphi \mid \varphi \sim \varphi \mid \mathcal{O}\varphi \mid \varphi \mathcal{T}\varphi$$

Unary modalities

- $\blacksquare \mathcal{F}, (\mathcal{F}_t)$ eventually
- $\blacksquare \ \mathcal{G}, \ (\mathcal{G}_t), \ \mathcal{AG}, \ (\mathcal{AG}_t) \text{ globally } \& \text{ almost globally (or often)}$
- X, Soon next & soon
- \mathcal{W}_t , \mathcal{L}_t within & lasts *t* instants
- Binary modalities
 - $\blacksquare \mathcal{U}, (\mathcal{U}_t), \mathcal{AU}, (\mathcal{AU}_t)$ until & almost until

A (10) A (10) A (10)

L-Semantics

Fuzzy satisfiability

- It is defined w.r.t. a linear structure (S, s_0, π, L)
- An strictly decreasing *avoiding function* $\eta : \mathbb{Z} \to [0, 1]$: $\eta(i) = 1$, $\forall i \leq 0$, and $\eta(n_{\eta}) = 0$ for some $n_{\eta} \in \mathbb{N}$.
- Fuzzy satisfiability relation $\models \subseteq S^{\omega} \times F \times [0,1]$, where $(\pi \models \varphi) = \nu \in [0,1]$ means that the truth degree of φ along π is ν .

4 E N 4 E N 4 E N 4 E

L-Semantics

Connectives

- *t*-norm substitutes \land
- *t*-conorm substitutes \lor

$$\begin{array}{l} (\pi^i \models p) = L(s^i)(p), \\ (\pi^i \models \neg \varphi) = \ominus(\pi^i \models \varphi), \\ (\pi^i \models \varphi \land \psi) = (\pi^i \models \varphi) \otimes (\pi^i \models \psi), \\ (\pi^i \models \varphi \lor \psi) = (\pi^i \models \varphi) \oplus (\pi^i \models \psi), \\ (\pi^i \models \varphi \Rightarrow \psi) = (\pi^i \models \varphi) \otimes (\pi^i \models \psi), \end{array}$$

э

L-Semantics

Next and Soon

 $\blacksquare \ \mathcal{X}$ has the same semantics of its corresponding LTL operator :

$$(\pi^i \models \mathcal{X}\varphi) = (\pi^{i+1} \models \varphi).$$

Soon extends \mathcal{X} by tolerating at most n_{η} time instants of delay:

$$(\pi^i \models \mathcal{Soon}\varphi) = \bigoplus_{j=i+1}^{i+n_\eta} (\pi^j \models \varphi) \cdot \eta(j-i-1).$$

Remark:

$$(\pi^i \models \mathcal{X}\varphi) \le (\pi^i \models \mathcal{S}oon\varphi).$$

L-Semantics

Next and Soon: example

n	0	1	2	3	4
$\eta(n)$	1	0.73	0.69	0.26	0
$\pi^0 \models p$	1	0.51	0.75	0.99	1

 $\pi^{0} \models \mathcal{Soon} p = 1 \cdot 0.51 \oplus 0.73 \cdot 0.75 \oplus 0.69 \cdot 0.99 \oplus 0.26 \cdot 1$ $= \begin{cases} 0.6831 & (\mathsf{Z}) \\ 1 & (\mathsf{k}) \\ \sim 0.928 & (\Pi) \end{cases}$

A (10) A (10)

13/25

L-Semantics

Eventually

\square \mathcal{F} and \mathcal{F}_t maintain the semantics of LTL operator **F**:

$$(\pi^{i} \models \mathcal{F}_{t}\varphi) = \bigoplus_{j=i}^{i+t} (\pi^{j} \models \varphi),$$
$$(\pi^{i} \models \mathcal{F}\varphi) = \bigoplus_{j\geq i} (\pi^{j} \models \varphi) = \lim_{t \to +\infty} (\pi^{i} \models \mathcal{F}_{t}\varphi).$$

Remark: \mathcal{F} is well defined by monotonicity and if $t \leq t'$:

$$(\pi^i \models \varphi) \le (\pi^i \models \mathcal{F}_t \varphi) \le (\pi^i \models \mathcal{F}_{t'} \varphi) \le (\pi^i \models \mathcal{F} \varphi).$$

-Semantics

Within

• \mathcal{W}_t is inherently bounded:

$$(\pi^i \models \mathcal{W}_t \varphi) = \bigoplus_{j=i}^{i+t+n_\eta - 1} (\pi^j \models \varphi) \cdot \eta(j-t-i).$$

• $W_t p$ means p is supposed to hold in at least one of the next t instant or, possibly, in the next $t + n_\eta$. In the last case we apply a penalization for each instant after the *t*-th.

Remark

$$\begin{split} \mathcal{W}_{0}\varphi &\equiv \mathcal{Soon}\varphi\\ \mathcal{W}_{t}\varphi &\equiv \mathcal{F}_{t}\varphi \lor \mathcal{X}^{t+1} \mathcal{Soon}\varphi\\ (\pi^{i} &\models \mathcal{W}_{t}\varphi) \geq (\pi^{i} \models \mathcal{F}_{t}\varphi)\\ \lim_{t \to +\infty} (\pi^{i} \models \mathcal{W}_{t}\varphi) &= (\pi^{i} \models \mathcal{F}\varphi) \end{split}$$

L-Semantics

Always

 \blacksquare \mathcal{G} and \mathcal{G}_t extend the semantics of \mathbf{G} :

$$\begin{aligned} &(\pi^i \models \mathcal{G}_t \varphi) = \bigotimes_{j=i}^{i+t} (\pi^j \models \varphi), \\ &(\pi^i \models \mathcal{G}\varphi) = \bigotimes_{j \ge i} (\pi^j \models \varphi) = \lim_{t \to +\infty} (\pi^i \models \mathcal{G}_t \varphi). \end{aligned}$$

Remark: \mathcal{G} is well defined by monotonicity and if $t \leq t'$:

$$\begin{array}{ll} (\pi^{i} \models \mathcal{G}\varphi) & \leq (\pi^{i} \models \mathcal{G}_{t}\varphi) \leq (\pi^{i} \models \mathcal{G}_{t'}\varphi) \\ & \leq (\pi^{i} \models \mathcal{G}_{1}\varphi) = (\pi^{i} \models \varphi \land \mathcal{X}\varphi) \\ & \leq (\pi^{i} \models \mathcal{G}_{0}\varphi) = (\pi^{i} \models \varphi) \end{array}$$

-Semantics

Almost always (Often)

- AG and AG_t evaluate a property over a path πⁱ, by avoiding at most n_η evaluations of this property, and introducing a penalization for each avoided case.
- Let I_t be the initial segment of \mathbb{N} of length t + 1 and $\mathcal{P}^k(I_t)$ the set of subsets of I_t of cardinality k:

$$\begin{aligned} (\pi^{i} \models \mathcal{AG}_{t} \varphi) &= \max_{j \in I_{t}} \max_{H \in \mathcal{P}^{t-j}(I_{t})} \bigotimes_{h \in H} (\pi^{i+h} \models \varphi) \cdot \eta(j) \\ (\pi^{i} \models \mathcal{AG} \varphi) &= \lim_{t \to +\infty} (\pi^{i} \models \mathcal{AG}_{t} \varphi) \end{aligned}$$

Remark: the sequence $(\pi^i \models \mathcal{AG}_t \varphi)_{t \in \mathbb{N}}$ is not monotonic. Still, the semantics of \mathcal{AG} is well-defined.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

17/25

Time Modalities over Many-valued Logics

-Fuzzyfication

L-Semantics

Almost always (Often): properties

It is possible to recursively define n propositional letters p_0, \ldots, p_{n-1} , such that

$$(\pi^i \models \mathcal{AG} \varphi) = \max_{j \le n_\eta - 1} \{ \mathcal{G} p_j \cdot \eta(j) \}$$

Corollary: AG is well-defined

$$\begin{array}{l} (\pi^i \models \mathcal{AG}_t \varphi) \geq (\pi^i \models \mathcal{G}_t \varphi), \\ (\pi^i \models \mathcal{AG} \varphi) \geq (\pi^i \models \mathcal{G} \varphi). \end{array}$$

Remark: it is not possible to establish a priori which inequality holds between $(\pi^i \models \mathcal{AG}_t \varphi)$ and $(\pi^i \models \mathcal{AG}_{t'} \varphi)$

L-Semantics

Almost globally: example

n	0	1	2	3	4	5
$\eta(n)$	1	0.73	0.69	0.26	0	0
$\pi^0 \models p$	0.51	0.68	0.22	0.99	0.82	0.45

 $\begin{aligned} (Z): \quad \pi^0 \models \mathcal{AG}_5 \, p &= \max\{0.51 \oplus 0.68 \oplus 0.22 \oplus 0.99 \oplus 0.82 \oplus 0.45, \\ &= 0.73 \cdot (0.51 \oplus 0.68 \oplus 0.99 \oplus 0.82 \oplus 0.45), \\ &= 0.69 \cdot (0.51 \oplus 0.68 \oplus 0.99 \oplus 0.82), \\ &= 0.26 \cdot (0.68 \oplus 0.99 \oplus 0.82) \} \\ &= \max\{0.22, 0.3285, 0.3519, 0.1768\} = 0.3519 \end{aligned}$

Time Modalities over Many-valued Logics			
- Fuzzyfication			

Lasts

L_t expresses that a property lasts for *t* consecutive instants from now, possibly avoiding some event:

$$(\pi^i \models \mathcal{L}_t \varphi) = \max_{0 \le j \le \min\{t, n_\eta - 1\}} \{ (\pi^i \models \mathcal{G}_{t-j} \varphi) \cdot \eta(j) \}.$$

Remark:

$$(\pi^{i} \models \mathcal{G}_{t}\varphi) \leq (\pi^{i} \models \mathcal{L}_{t}\varphi) \leq (\pi^{i} \models \mathcal{A}\mathcal{G}_{t}\varphi)$$
$$\lim_{t \to +\infty} (\pi^{i} \models \mathcal{L}_{t}\varphi) = (\pi^{i} \models \mathcal{G}\varphi)$$

< 6 b

L-Semantics

Until and Almost Until

• \mathcal{U} and \mathcal{U}_t naturally extends the corresponding LTL operator U:

$$\begin{aligned} &(\pi^i \models \varphi \, \mathcal{AU}_0 \, \psi) = (\pi^i \models \psi), \\ &(\pi^i \models \varphi \, \mathcal{AU}_t \, \psi) = \max_{i \leq j \leq i+t} \left((\pi^j \models \psi) \otimes (\pi^i \models \mathcal{AG}_{j-1} \, \varphi) \right), \\ &(\pi^i \models \varphi \, \mathcal{AU} \, \psi) = \lim_{t \to +\infty} (\pi^i \models \varphi \, \mathcal{AU}_t \, \psi), \end{aligned}$$

Remark:

$$\begin{aligned} (\pi^i \models \varphi \, \mathcal{U} \, \psi) &\leq (\pi^i \models \mathcal{F} \psi) \\ (\pi^i \models \psi) &= (\pi^i \models \varphi \, \mathcal{A} \mathcal{U}_0 \, \psi) \leq (\pi^i \models \varphi \, \mathcal{U}_t \, \psi) \\ &\leq (\pi^i \models \varphi \, \mathcal{A} \mathcal{U}_t \, \psi) \leq (\pi^i \models \varphi \, \mathcal{A} \mathcal{U} \, \psi) \end{aligned}$$

-Reductions and equivalences

Reduction to LTL

- Remark 1: let for all $p \in AP$ and $i \in \mathbb{N}$, $\pi^i \models p \in \{0, 1\}$, and $\eta(1) = 0$. Then FTL reduces to LTL.
- Remark 2: let $p, q \in AP$ such that for all $j \ge i$, $(\pi^j \models p), (\pi^j \models q) \in \{0, 1\}$, then

$$\begin{array}{l} (\pi^i \models \mathcal{F}p) = 1 \Leftrightarrow \pi^i \models \mathbf{F}p \\ (\pi^i \models \mathcal{G}p) = 1 \Leftrightarrow \pi^i \models \mathbf{G}p \\ (\pi^i \models p\mathcal{U} q) = 1 \Leftrightarrow \pi^i \models p\mathbf{U}q \end{array}$$

< 回 > < 回 > < 回 >

Adequate sets

- Adequate set: set of connectives/modalities that is sufficient to equivalently express any formula of the logic.
- **Ex.:** $\{\mathbf{X}, \mathbf{U}, \wedge, \neg\}$ is adequate for LTL
- For $1 \leq j < n_n$ define \odot^j :

$$(\pi^i\models\odot^j\varphi)=(\pi^i\models\varphi)\cdot\eta(j).$$

Logic	Adequate set
FTL(Z)	$\wedge, eg,\mathcal{X},\mathcal{U},\mathcal{A}\mathcal{U},\odot^1,\ldots,\odot^{n_\eta-1}$
FTL(G)	$\wedge,\Rightarrow,\mathcal{X},\mathcal{U},\mathcal{AU},\odot^1,\ldots,\odot^{n_\eta-1}$
FTL(Ł)	$\wedge,\Rightarrow,\mathcal{X},\mathcal{F},\mathcal{U},\mathcal{AU},\odot^1,\ldots,\odot^{n_\eta-1}$
$FTL(\Pi)$	$\wedge, \Rightarrow, \lor, \mathcal{X}, \mathcal{F}, \mathcal{G}, \mathcal{U}, \mathcal{AU}$

-Further development

FTA: Fuzzy Timed Automata

- Model a system by an enriched Timed Automata (FTA): an automaton with a finite set of clocks, a finite set of crisp events and a finite set of variables (control variables) representing the support for fuzzy events
- Evaluation Technique:
 - Inspired by real-time model checking and reachability analysis
 - FTA is transformed into a suitable timed transition system (FTTS) and a FTL formula is evaluated on it

-Further development

Extend the technique to represent an LTL formula into Büchi automata [Vardi, Wolper] to express FTL formulae

< 回 ト < 三 ト < 三

25/25