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Time Modalities over Many-valued Logics

Introduction

Fuzzy logic

Fuzzy Logic is a logical system which is an extension of
multivalued logic and is intended to serve, as a logic of
approximate reasoning
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Time Modalities over Many-valued Logics

Introduction

Fuzzy Logic vs. Probability

Fuzzy logic
It deals with not measurable events
The definition of the considered events is vague
Ex.: Tomorrow will be cold

Probability
It deals with observable events whose occurrence is uncertain
Ex.: Tomorrow the temperature will be 10◦C at 12:00
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Fuzzyfication

From crisp to fuzzy connectives

The semantics of existing fuzzy temporal operators is based on the
idea of replacing classical connectives or propositions with their fuzzy
counterparts.

Fuzzy LTL (FLTL) [Lamine, Kabanza]:
LTL in which Boolean operators are interpreted as in Zadeh
interpretation

Do not allow to represent additional temporal properties, such as
almost always, soon.
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Time Modalities over Many-valued Logics

Fuzzyfication

From fuzzy connectives to fuzzy modalities

Introduction of proper fuzzy temporal operators to represent short/long
time distance in which a specific property must be satisfied

Lukasiewicz TL (FLTL) [Thiele, Kalenka]:
LTL with short/medium/long term operators

No specific fuzzy semantics for temporal modalities: depend on the
interpretation given to a (sub-)argument, which is an untimed fuzzy
formula.
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Time Modalities over Many-valued Logics

Fuzzyfication

FTL: Fuzzy Time modalities in LTL

We want to add temporal modalities such as “often”, “soon”, etc.
This kind of modalities may be useful when we need to specify
situations when a formula is slightly satisfied, since an event
happens a little bit later than expected, when a property is always
satisfied except for a small set of time instants, or a property is
maintained for a time interval which is slightly smaller than the
one.
The underlying logic is a t-norm based logic.
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Time Modalities over Many-valued Logics

Fuzzyfication

t-norm/conorm, implication & negation

boundary value commutativity associativity monotonicity

negation 	0 = 1
	1 = 0

- - α ≤ β ⇒ 	α ≥ 	β

t-norm α⊗ 0 = 0
α⊗ 1 = α

yes yes β ≥ γ ⇒ α⊗ β ≥ α⊗ γ
α⊗ β ≤ α

t-conorm α⊕ 0 = α
α⊕ 1 = 1

yes yes β ≥ γ ⇒ α⊕ β ≥ α⊕ γ
α⊕ β ≥ α

implication
1 5 β = β

0 5 β = α5 1 = 1
α5 0 = 	α

no no
α ≤ β ⇒ α5 γ ≥ β 5 γ
β ≤ γ ⇒ α5 β ≤ α5 γ
α5 β ≥ max{	α, β}
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Time Modalities over Many-valued Logics

Fuzzyfication

Zadeh logic & t-norm based logics

Zadeh Gödel-Dummett Łukasiewicz Product

	α 1− α
{

1, α = 0
0, α > 0

1− α
{

1, α = 0
0, α > 0

α⊗ β min{α, β} min{α, β} max{α + β − 1, 0} α · β

α⊕ β max{α, β} max{α, β} min{α + β, 1} α + β − α · β

α5 β max{1− α, β}
{

1, α ≤ β
β, α > β

min{1− α + β, 1}
{

1, α ≤ β
β/α, α > β
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Time Modalities over Many-valued Logics

Fuzzyfication

Syntax

Syntax

ϕ := p | ¬ϕ | ϕ ∼ ϕ | Oϕ | ϕT ϕ

Unary modalities
F , (Ft) eventually
G, (Gt), AG, (AGt) globally & almost globally (or often)
X , Soon next & soon
Wt, Lt within & lasts t instants

Binary modalities
U , (U t), AU , (AU t) until & almost until

Achille Frigeri (Politecnico di Milano) Time Modalities over Many-valued Logics September 19, 2012 9 / 25



Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Fuzzy satisfiability

It is defined w.r.t. a linear structure (S, s0, π, L)

An strictly decreasing avoiding function η : Z→ [0, 1]: η(i) = 1,
∀i ≤ 0, and η(nη) = 0 for some nη ∈ N.
Fuzzy satisfiability relation |= ⊆ Sω × F × [0, 1], where
(π |= ϕ) = ν ∈ [0, 1] means that the truth degree of ϕ along π is ν.
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Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Connectives

t-norm substitutes ∧
t-conorm substitutes ∨

(πi |= p) = L(si)(p),
(πi |= ¬ϕ) = 	(πi |= ϕ),
(πi |= ϕ ∧ ψ) = (πi |= ϕ)⊗ (πi |= ψ),
(πi |= ϕ ∨ ψ) = (πi |= ϕ)⊕ (πi |= ψ),
(πi |= ϕ⇒ ψ) = (πi |= ϕ) 5 (πi |= ψ),
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Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Next and Soon

X has the same semantics of its corresponding LTL operator :

(πi |= Xϕ) = (πi+1 |= ϕ).

Soon extends X by tolerating at most nη time instants of delay:

(πi |= Soonϕ) =

i+nη⊕
j=i+1

(πj |= ϕ) · η(j − i− 1).

Remark:
(πi |= Xϕ) ≤ (πi |= Soonϕ).
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Fuzzyfication

Semantics

Next and Soon: example

n 0 1 2 3 4

η(n) 1 0.73 0.69 0.26 0
π0 |= p 1 0.51 0.75 0.99 1

π0 |= Soon p = 1 · 0.51⊕ 0.73 · 0.75⊕ 0.69 · 0.99⊕ 0.26 · 1

=


0.6831 (Z)
1 (Ł)
∼ 0.928 (Π)
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Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Eventually

F and Ft maintain the semantics of LTL operator F:

(πi |= Ftϕ) =

i+t⊕
j=i

(πj |= ϕ),

(πi |= Fϕ) =
⊕
j≥i

(πj |= ϕ) = lim
t→+∞

(πi |= Ftϕ).

Remark: F is well defined by monotonicity and if t ≤ t′:

(πi |= ϕ) ≤ (πi |= Ftϕ) ≤ (πi |= Ft′ϕ) ≤ (πi |= Fϕ).
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Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Within

Wt is inherently bounded:

(πi |=Wtϕ) =

i+t+nη−1⊕
j=i

(πj |= ϕ) · η(j − t− i).

Wtp means p is supposed to hold in at least one of the next t
instant or, possibly, in the next t+ nη. In the last case we apply a
penalization for each instant after the t-th.
Remark

W0ϕ ≡ Soonϕ
Wtϕ ≡ Ftϕ ∨ X t+1 Soonϕ
(πi |=Wtϕ) ≥ (πi |= Ftϕ)
limt→+∞(πi |=Wtϕ) = (πi |= Fϕ)
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Time Modalities over Many-valued Logics

Fuzzyfication

Semantics

Always

G and Gt extend the semantics of G:

(πi |= Gtϕ) =
⊗i+t

j=i(π
j |= ϕ),

(πi |= Gϕ) =
⊗

j≥i(π
j |= ϕ) = limt→+∞(πi |= Gtϕ).

Remark: G is well defined by monotonicity and if t ≤ t′:

(πi |= Gϕ) ≤ (πi |= Gtϕ) ≤ (πi |= Gt′ϕ)
≤ (πi |= G1ϕ) = (πi |= ϕ ∧ Xϕ)
≤ (πi |= G0ϕ) = (πi |= ϕ)
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Fuzzyfication

Semantics

Almost always (Often)

AG and AGt evaluate a property over a path πi, by avoiding at
most nη evaluations of this property, and introducing a
penalization for each avoided case.
Let It be the initial segment of N of length t+ 1 and Pk(It) the set
of subsets of It of cardinality k:

(πi |= AGt ϕ) = maxj∈It maxH∈Pt−j(It)
⊗

h∈H(πi+h |= ϕ) · η(j)

(πi |= AG ϕ) = limt→+∞(πi |= AGt ϕ)

Remark: the sequence (πi |= AGt ϕ)t∈N is not monotonic. Still, the
semantics of AG is well-defined.
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Fuzzyfication

Semantics

Almost always (Often): properties

It is possible to recursively define n propositional letters
p0, . . . , pn−1, such that

(πi |= AG ϕ) = max
j≤nη−1

{Gpj · η(j)}

Corollary: AG is well-defined

(πi |= AGt ϕ) ≥ (πi |= Gtϕ),
(πi |= AG ϕ) ≥ (πi |= Gϕ).

Remark: it is not possible to establish a priori which inequality
holds between (πi |= AGt ϕ) and (πi |= AGt′ ϕ)
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Fuzzyfication

Semantics

Almost globally: example

n 0 1 2 3 4 5

η(n) 1 0.73 0.69 0.26 0 0
π0 |= p 0.51 0.68 0.22 0.99 0.82 0.45

(Z) : π0 |= AG5 p = max{0.51⊕ 0.68⊕ 0.22⊕ 0.99⊕ 0.82⊕ 0.45,
= 0.73 · (0.51⊕ 0.68⊕ 0.99⊕ 0.82⊕ 0.45),
= 0.69 · (0.51⊕ 0.68⊕ 0.99⊕ 0.82),
= 0.26 · (0.68⊕ 0.99⊕ 0.82)}
= max{0.22, 0.3285, 0.3519, 0.1768} = 0.3519
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Fuzzyfication

Semantics

Lasts

Lt expresses that a property lasts for t consecutive instants from
now, possibly avoiding some event:

(πi |= Ltϕ) = max
0≤j≤min{t,nη−1}

{(πi |= Gt−jϕ) · η(j)}.

Remark:

(πi |= Gtϕ) ≤ (πi |= Ltϕ) ≤ (πi |= AGt ϕ)
limt→+∞(πi |= Ltϕ) = (πi |= Gϕ)
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Fuzzyfication

Semantics

Until and Almost Until

U and U t naturally extends the corresponding LTL operator U:

(πi |= ϕAU0 ψ) = (πi |= ψ),
(πi |= ϕAU t ψ) = maxi≤j≤i+t

(
(πj |= ψ)⊗ (πi |= AGj−1 ϕ)

)
,

(πi |= ϕAU ψ) = limt→+∞(πi |= ϕAU t ψ),

Remark:
(πi |= ϕU ψ) ≤ (πi |= Fψ)

(πi |= ψ) = (πi |= ϕAU0 ψ) ≤ (πi |= ϕU t ψ)
≤ (πi |= ϕAU t ψ) ≤ (πi |= ϕAU ψ)

Achille Frigeri (Politecnico di Milano) Time Modalities over Many-valued Logics September 19, 2012 21 / 25



Time Modalities over Many-valued Logics

Reductions and equivalences

Reduction to LTL

Remark 1: let for all p ∈ AP and i ∈ N, πi |= p ∈ {0, 1}, and
η(1) = 0. Then FTL reduces to LTL.
Remark 2: let p, q ∈ AP such that for all j ≥ i,
(πj |= p), (πj |= q) ∈ {0, 1}, then

(πi |= Fp) = 1⇔ πi |= Fp
(πi |= Gp) = 1⇔ πi |= Gp
(πi |= pU q) = 1⇔ πi |= pUq
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Time Modalities over Many-valued Logics

Reductions and equivalences

Adequate sets
Adequate set: set of connectives/modalities that is sufficient to
equivalently express any formula of the logic.
Ex.: {X,U,∧,¬} is adequate for LTL
For 1 ≤ j < nη define �j :

(πi |= �jϕ) = (πi |= ϕ) · η(j).

Logic Adequate set

FTL(Z) ∧,¬,X ,U ,AU ,�1, . . . ,�nη−1
FTL(G) ∧,⇒,X ,U ,AU ,�1, . . . ,�nη−1
FTL(Ł) ∧,⇒,X ,F ,U ,AU ,�1, . . . ,�nη−1
FTL(Π) ∧,⇒,∨,X ,F ,G,U ,AU
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Further development

FTA: Fuzzy Timed Automata

Model a system by an enriched Timed Automata (FTA):
an automaton with a finite set of clocks, a finite set of crisp events
and a finite set of variables (control variables) representing the
support for fuzzy events
Evaluation Technique:

Inspired by real-time model checking and reachability analysis
FTA is transformed into a suitable timed transition system (FTTS)
and a FTL formula is evaluated on it
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Time Modalities over Many-valued Logics

Further development

From FTL to Büchi Automata

Extend the technique to represent an LTL formula into Büchi
automata [Vardi, Wolper] to express FTL formulae
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