
On searching and extracting strings
from compressed textual data

Rossano Venturini

University of Pisa

Referees
Ricardo Baeza-Yates
Jeffrey Vitter

Supervisor
Paolo Ferragina

Data Structures

Data Compression

Data Structures

Data Compression

+ Fast queries
- Add extra data

Data Structures

Data Compression

+ Fast queries
- Add extra data

+ Space efficiency
- Slow access to data

Data Structures

Data Compression
&

+ Fast queries
- Add extra data

+ Space efficiency
- Slow access to data

Data Structures

Data Compression
&

+ Fast queries
- Add extra data

+ Space efficiency
- Slow access to data

Fit as much as data as possible in
the higher levels of memory hierarchy

A prefix search on a dictionary of strings
containing past queries

A prefix search on a dictionary of strings
containing past queries

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A prefix search on a dictionary of strings
containing past queries

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A search for each symbol we digit
=>

Trie must fit in RAM

A prefix search on a dictionary of strings
containing past queries

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A search for each symbol we digit
=>

Trie must fit in RAM

153,645,450
distinct queries

in 6 weeks Altavista
query log

A prefix search on a dictionary of strings
containing past queries

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A search for each symbol we digit
=>

Trie must fit in RAM

153,645,450
distinct queries

in 6 weeks Altavista
query log

Tree + Edges labels + Text ≈12 Gbytes
(assuming queries of 5 symbols each)

A prefix search on a dictionary of strings
containing past queries

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A search for each symbol we digit
=>

Trie must fit in RAM

153,645,450
distinct queries

in 6 weeks Altavista
query log

Tree + Edges labels + Text ≈12 Gbytes
(assuming queries of 5 symbols each)

Compressed Tree + Compressed text with fast decompression < 800 Mbytes

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 2011

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 2011

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 2011

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Graphs

FOCS, 1997
DCC, 2001

WWW, 2004
ESA, 2008

FOCS, 2009

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 2011

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Graphs

FOCS, 1997
DCC, 2001

WWW, 2004
ESA, 2008

FOCS, 2009

Labeled
Trees

 e.g. XML

FOCS, 2005
WWW, 2006
SODA, 2007

Functions

ICALP, 2003
ICALP, 2004
SODA, 2004
ICALP, 2008
ESA, 2009

Point Sets

SODA, 2003
TALG, 2007
WADS, 2009
SODA, 2011
SOCG, 2011

Hashing

SODA, 2004
SODA, 2009
ESA, 2009

ICALP, 2009
SODA, 2013

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 2011

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Graphs

FOCS, 1997
DCC, 2001

WWW, 2004
ESA, 2008

FOCS, 2009

Labeled
Trees

 e.g. XML

FOCS, 2005
WWW, 2006
SODA, 2007

Functions

ICALP, 2003
ICALP, 2004
SODA, 2004
ICALP, 2008
ESA, 2009

Point Sets

SODA, 2003
TALG, 2007
WADS, 2009
SODA, 2011
SOCG, 2011

Hashing

SODA, 2004
SODA, 2009
ESA, 2009

ICALP, 2009
SODA, 2013

Maximize Compression and
Efficiently Access and Search

Compressor’s performance
optimization

• Input: a text T[1,n] and ANY compressor C

• Goal: an optimal partition of T in blocks
such that compress size achieved by
compressing them individually with C is
better than that of the whole T

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011

Why?

Why?

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

n + log n bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

n + log n bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

n + log n bits

n log n bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

n + log n bits

n log n bits

Why?

A A A A A A A B B B B B B B BAT

c · n ·H0(T) + f(n,⌃)

n ·H0(T) +O(| ⌃ | log n)e.g., Arithmetic

bits

bits

n + log n bits

n log n bits

0 + 2 log n bits

Result
 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011

Result

• Optimal partition can be found with Dynamic
Programming in O(n2) time

• Not usable in practice for texts longer than few Mbs

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011

Result

• Optimal partition can be found with Dynamic
Programming in O(n2) time

• Not usable in practice for texts longer than few Mbs

• For any fixed parameter ϵ>0, our algorithm computes an
(1+ϵ)-approximation of the optimal partition in
O(n log1+ϵ n) time and linear space

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011

Result

• Optimal partition can be found with Dynamic
Programming in O(n2) time

• Not usable in practice for texts longer than few Mbs

• For any fixed parameter ϵ>0, our algorithm computes an
(1+ϵ)-approximation of the optimal partition in
O(n log1+ϵ n) time and linear space

• The idea is exploiting a particular property of the cost
function to speed up Dynamic programming solution

• The property (monotonicity) is quite common. Thus, the idea can be
used in other contexts.

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011

• Input: a text T[1,n]

• Goal: find the optimal LZ77 parsing of T
(i.e., the parsing that minimizes the
compress size)

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b) (2,3)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b) (2,3) (1,3)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b) (2,3) (1,3) (7,8)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b) (2,3) (1,3) (7,8)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Encode distances and lengths with two uniquely
decodable encoding functions

f,g:[n]→{0,1}*

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

a a b a a a a b a b a a a a bbT

(0,a) (0,b) (2,3) (1,3) (7,8)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Decompression is simple and efficient in practice

Encode distances and lengths with two uniquely
decodable encoding functions

f,g:[n]→{0,1}*

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Greedy strategy wastes space

T … abacdde ….......................... abae cdde abacddf ...

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

Cost = |f(2k)| = log 2k = k bits

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

Cost = |f(2k)| = log 2k = k bits

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

Cost = |f(2k)| = log 2k = k bits

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

2h

Cost = |f(2k)| = log 2k = k bits

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

| LZ(T) |
| OPT (T)

= ⌦(

log | T |
log log | T |)

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

good in practice?

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

| LZ(T) |
| OPT (T)

= ⌦(

log | T |
log log | T |)

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

good in practice?

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

| LZ(T) |
| OPT (T)

= ⌦(

log | T |
log log | T |)

Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae cdde abacddf ...

good in practice?

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

| LZ(T) |
| OPT (T)

= ⌦(

log | T |
log log | T |)

Fast in decompression!
0.8 vs 20 secs x 50Mbs

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

Many
m i s s i n g
de t a i l s !

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

in practice?

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

in practice?

• Optimal parsing can be found with Dynamic
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

in practice?

BWT compression
&

LZ77 speed!

Compressed Scheme with
optimal access

 with P. Ferragina, SODA 2007 / TCS 2007

• Input: a text T[1,n]

• Goal: design a compressed scheme able to
access any portion of T in optimal time
(i.e., w bits of information in O(1) time)

• Space is bounded in terms of k-th order entropy
of T (Hk(T) + o(n log |Σ|) bits)

Simple scheme with interesting analysis

b

T Α Β Α Y Χ Α ...

 -- 0 -- 00 1 0 ...C

code

000
11
10
01
00
1
0
ε frequency

block

...

...

...

...
γ
Χ
Β
Α

Y

 b = ½ logσ n

 # blocks = n/b = O(n / logσ n)
 #distinct blocks = O(σb) = O(n½)

P 1 1 2 2 4 5 6 ...

 with P. Ferragina, SODA 2007 / TCS 2007

Simple scheme with interesting analysis

b

T Α Β Α Y Χ Α ...

 -- 0 -- 00 1 0 ...C

code

000
11
10
01
00
1
0
ε frequency

block

...

...

...

...
γ
Χ
Β
Α

Y

 b = ½ logσ n

 # blocks = n/b = O(n / logσ n)
 #distinct blocks = O(σb) = O(n½)

P 1 1 2 2 4 5 6 ...

Building block for
many subsequent
compressed DSs

 with P. Ferragina, SODA 2007 / TCS 2007

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

	
 Input: a text T[1,n]
	

	
 Queries:

Count(P): # times string P[1,p] occurs in T
Locate(P): positions of the occurrences of P[1,p] in T
Extract(i,j): return T[i,j]

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

	
 Input: a text T[1,n]
	

	
 Queries:

Count(P): # times string P[1,p] occurs in T
Locate(P): positions of the occurrences of P[1,p] in T
Extract(i,j): return T[i,j]

	
 Time-efficient solutions, but not compressed
Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: Θ(n log n) bits --- in practice 5x-20x the text size

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

	
 Input: a text T[1,n]
	

	
 Queries:

Count(P): # times string P[1,p] occurs in T
Locate(P): positions of the occurrences of P[1,p] in T
Extract(i,j): return T[i,j]

	
 Time-efficient solutions, but not compressed
Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: Θ(n log n) bits --- in practice 5x-20x the text size

	
 Space-efficient solutions, but slow
Zgrep: uncompress and scan-based algorithm
Time: O(n)
Space: LZ77 compression

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

	
 Input: a text T[1,n]
	

	
 Queries:

Count(P): # times string P[1,p] occurs in T
Locate(P): positions of the occurrences of P[1,p] in T
Extract(i,j): return T[i,j]

	
 Time-efficient solutions, but not compressed
Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: Θ(n log n) bits --- in practice 5x-20x the text size

	
 Space-efficient solutions, but slow
Zgrep: uncompress and scan-based algorithm
Time: O(n)
Space: LZ77 compression

Compressed Full-text
Indexes

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

Suffix Array’s operations but in compressed space

Three Families:
FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter, STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

Suffix Array’s operations but in compressed space

Three Families:
FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter, STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Studies at a theoretical stage. No experimental comparison.

Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008

Suffix Array’s operations but in compressed space

Three Families:
FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter, STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Studies at a theoretical stage. No experimental comparison.

Contribution: Algorithmic engineering and experimetal effort

Are they of practical impact?

Are they of practical impact?

- Count(P) takes 2 microsecs/char -- 50% space

Are they of practical impact?

- Count(P) takes 2 microsecs/char -- 50% space 5x slower!

Are they of practical impact?

- Count(P) takes 2 microsecs/char -- 50% space

- Extract 1 Mb/sec

5x slower!

Are they of practical impact?

- Count(P) takes 2 microsecs/char -- 50% space

- Extract 1 Mb/sec

- Locate(P) takes 15 microsecs/occ -- 70% space

5x slower!

Are they of practical impact?

- Count(P) takes 2 microsecs/char -- 50% space

- Extract 1 Mb/sec

- Locate(P) takes 15 microsecs/occ -- 70% space

5x slower!

500x slower!

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Hashing

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Hashing
Need D to avoid false-positive

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Hashing
Need D to avoid false-positive
Solve only Id ⇔ String

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE
ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT
PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN µsecs/char AVERAGED OVER ONE MILLION OF SEARCHED
PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION !
[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE
ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT
PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN µsecs/char AVERAGED OVER ONE MILLION OF SEARCHED
PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION !
[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE
ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT
PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN µsecs/char AVERAGED OVER ONE MILLION OF SEARCHED
PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION !
[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

tr
ad

e-
of

f

Pattern matching on
Dictionary of Strings

 with P. Ferragina, SIGIR 2007 / TALG 2010

	
 Input: dictionary D of strings
	

	
 Queries:

Id ⇔ String

Prefix(P): strings prefixed by P[1,p]
Suffix(P): strings suffixed by P[1,p]
PrefixSuffix(P,Q): strings prefixed by P[1,p] and suffixed by Q[1,q]

 Compact tries
Need node/edges pointer
Need D to retrive edges' labels
Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ϴ(occP+occQ)

The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE
ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT
PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN µsecs/char AVERAGED OVER ONE MILLION OF SEARCHED
PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION !
[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

>85x

Maximize Compression and
Efficiently Access and Search

Maximize Compression and
Efficiently Access and Search

What’s next?

Maximize Compression and
Efficiently Access and Search

What’s next?

External Memory

Maximize Compression and
Efficiently Access and Search

What’s next?

External Memory

Solid disk

Multi-core processors
GPUs

Maximize Compression and
Efficiently Access and Search

What’s next?

Distributed Computing
Cloud computing

External Memory

Solid disk

Multi-core processors
GPUs

Maximize Compression and
Efficiently Access and Search

What’s next?

Distributed Computing
Cloud computing

External Memory

Solid disk

Multi-core processors
GPUs

Energy/Money

Maximize Compression and
Efficiently Access and Search

What’s next?

Distributed Computing
Cloud computing

External Memory

Solid disk

Multi-core processors
GPUs

Energy/Money Export ideas in
other fields

Time lower bounds Space lower bounds

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution to reduce time complexity

with P. Ferragina, J. Siren, ESA 2011

Distribution-Aware
Compressed Full-text Indexing

●
● ● ●

Sample rate

M
illi

on
s

of
 o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

● Regular
Optimal
Greedy
HalfGreedy

HTML Pages DBLP

●
●

● ●

Sample rate

M
illi

on
s

of
 o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

10,000 patterns
187 million of positions

10,000 patterns
276 million of positions

with P. Ferragina, J. Siren, ESA 2011

Distribution-Aware
Compressed Full-text Indexing

●
● ● ●

Sample rate

M
illi

on
s

of
 o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

● Regular
Optimal
Greedy
HalfGreedy

HTML Pages DBLP

●
●

● ●

Sample rate

M
illi

on
s

of
 o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

7x
8x

10x
8x

8x

6x
4x

10,000 patterns
187 million of positions

10,000 patterns
276 million of positions

Time lower bounds Space lower bounds
What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?What is the minimum time complexity of your

query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2n binary texts of len n ⇒ log 2n = n bits.

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2n binary texts of len n ⇒ log 2n = n bits.

No two objects can have the same
representation!

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2n binary texts of len n ⇒ log 2n = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice?

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2n binary texts of len n ⇒ log 2n = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice?

- Buy more memory!

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Time lower bounds Space lower bounds
What is the minimum numbers of bits you need?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2n binary texts of len n ⇒ log 2n = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice?

- Buy more memory!

- Design data structures without data.
DS has to err! but error rate can be
guaranteed

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problems.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformally at
random
- Prove all Q must require T(Q) time
- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent
queries, or self-adapts to unknown
distribution

Compressed Functions
 with D. Belazzougui, SODA 2013

Compressed Functions
 with D. Belazzougui, SODA 2013

problem

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

F : S ✓ U ! ⌃

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

F : S ✓ U ! ⌃

• Trie to search on domain of F

• Leaves of this trie store the weather in
the corresponding city

• Space: size(domain) + size(image)

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

F : S ✓ U ! ⌃

Do we really need to
store the name of a

city to know its
weather?

• Trie to search on domain of F

• Leaves of this trie store the weather in
the corresponding city

• Space: size(domain) + size(image)

Compressed Functions
 with D. Belazzougui, SODA 2013

City Weather
New York

Rome

Madrid

Helsinki

Oslo

London

Athens

Berlin

problem

F : S ✓ U ! ⌃

Do we really need to
store the name of a

city to know its
weather?

• Trie to search on domain of F

• Leaves of this trie store the weather in
the corresponding city

• Space: size(domain) + size(image)

• Compressed representation of F so that, given a key X in O(1)

• we return F(X), if X belongs to S

• we return an arbitrary value, otherwise

• No need to store/access/remember the domain of F

• Codomain is stored in compressed space (Entropy of values)

Occurrence Estimation
 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

• T is not needed and I uses sublinear space

• Results are incorrect for (at most) a term +E

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

• T is not needed and I uses sublinear space

• Results are incorrect for (at most) a term +E

• Our PODS provides an O(|P|) time space/error optimal
solution

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

• T is not needed and I uses sublinear space

• Results are incorrect for (at most) a term +E

• Our PODS provides an O(|P|) time space/error optimal
solution

• i.e., O(|T|/E) bits

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

• T is not needed and I uses sublinear space

• Results are incorrect for (at most) a term +E

• Our PODS provides an O(|P|) time space/error optimal
solution

• i.e., O(|T|/E) bits

• Application to Selectivity Estimation in DB for execution
planing optimizations

 with A. Orlandi, PODS 2011

Occurrence Estimation

• A (large) text T is preprocessed and a (small) index
I is built

• I is able to estimate the number of occurrences of any
given substring P in T without the need of T

• T is not needed and I uses sublinear space

• Results are incorrect for (at most) a term +E

• Our PODS provides an O(|P|) time space/error optimal
solution

• i.e., O(|T|/E) bits

• Application to Selectivity Estimation in DB for execution
planing optimizations

 with A. Orlandi, PODS 2011

Dataset Size �
l = 8 l = 64 l = 256

|T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)|
dblp 275 96 36064 28017 1034016 4508 3705 103383 1127 941 20200
dna 292 15 38399 42361 814993 4799 5491 102127 1199 1317 19194
english 501 225 65764 53600 660957 8220 6491 64500 2055 1616 14316
sources 194 229 25475 25474 11376730 3184 3264 9430627 796 982 8703817

Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of ⌃: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T);
sum of length of labels in PST l(T). All numbers are expressed in thousands.

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(a) dblp

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(b) dna

 0

 50

 100

 150

 200

 250

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(c) english

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(d) sources
• FM-index ⇥ PST ⇤ APPROX ⌅ CPST

Figure 8: Space occupancies of indexes as a function of the error threshold l .

CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the

Occurrence Estimation
 with A. Orlandi, PODS 2011

Dataset Size �
l = 8 l = 64 l = 256

|T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)|
dblp 275 96 36064 28017 1034016 4508 3705 103383 1127 941 20200
dna 292 15 38399 42361 814993 4799 5491 102127 1199 1317 19194
english 501 225 65764 53600 660957 8220 6491 64500 2055 1616 14316
sources 194 229 25475 25474 11376730 3184 3264 9430627 796 982 8703817

Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of ⌃: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T);
sum of length of labels in PST l(T). All numbers are expressed in thousands.

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(a) dblp

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(b) dna

 0

 50

 100

 150

 200

 250

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(c) english

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(d) sources
• FM-index ⇥ PST ⇤ APPROX ⌅ CPST

Figure 8: Space occupancies of indexes as a function of the error threshold l .

CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the

5 Mb,100x smaller than text

Occurrence Estimation
 with A. Orlandi, PODS 2011

Dataset Size �
l = 8 l = 64 l = 256

|T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)|
dblp 275 96 36064 28017 1034016 4508 3705 103383 1127 941 20200
dna 292 15 38399 42361 814993 4799 5491 102127 1199 1317 19194
english 501 225 65764 53600 660957 8220 6491 64500 2055 1616 14316
sources 194 229 25475 25474 11376730 3184 3264 9430627 796 982 8703817

Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of ⌃: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T);
sum of length of labels in PST l(T). All numbers are expressed in thousands.

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(a) dblp

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(b) dna

 0

 50

 100

 150

 200

 250

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(c) english

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(d) sources
• FM-index ⇥ PST ⇤ APPROX ⌅ CPST

Figure 8: Space occupancies of indexes as a function of the error threshold l .

CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the

Occurrence Estimation
 with A. Orlandi, PODS 2011

Dataset Size �
l = 8 l = 64 l = 256

|T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)| |T |/l |PST l |
P

i |edge(i)|
dblp 275 96 36064 28017 1034016 4508 3705 103383 1127 941 20200
dna 292 15 38399 42361 814993 4799 5491 102127 1199 1317 19194
english 501 225 65764 53600 660957 8220 6491 64500 2055 1616 14316
sources 194 229 25475 25474 11376730 3184 3264 9430627 796 982 8703817

Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of ⌃: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T);
sum of length of labels in PST l(T). All numbers are expressed in thousands.

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(a) dblp

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(b) dna

 0

 50

 100

 150

 200

 250

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(c) english

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256

S
p
a
ce

 (
M

b
yt

e
s)

Error Threshold

(d) sources
• FM-index ⇥ PST ⇤ APPROX ⌅ CPST

Figure 8: Space occupancies of indexes as a function of the error threshold l .

CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the

Precision improvement in Selectivity Estimation:
5x -- 800x

Occurrence Estimation
 with A. Orlandi, PODS 2011

Thank You!

