On searching and extracting strings
from compressed textual data

University of Pisa

Supervisor Referees
Paolo Ferragina Ricardo Baeza-Yates
Jeffrey Vitter

Data Structures

Data Compression

Data Structures

+ Fast queries
- Add extra data

Data Compression

Data Structures

+ Fast queries
- Add extra data

Data Compression

+ Space efficiency
- Slow access to data

Data Structures

+ Fast queries
- Add extra data

&

Data Compression

+ Space efficiency
- Slow access to data

Data Structures

+ Fast queries
- Add extra data

&

Data Compression

+ Space efficiency
- Slow access to data
Fit as much as data as possible in

the higher levels of memory hierarchy

GO\ /gle ’ diego arm ’ “

diego armando maradona
diego armando

Search diego armando maradona biography
diego armus

Web Diego Maradona - Wikipedia, the free encyclopedia Diego Maradona
en.wikipedia.org/wiki/Diego_Maradona

Images Diego Armando Maradona Franco (Spanish pronunciation: ['djeyo mara '8ona]; born 30

October 1960) is a retired Argentine football player, and current ...

Maps
a » Al Wasl| FC - Argentina 2—-1 England (1986 ... - Sergio Aglero - Diego Sinagra
Videos
News Images for diego armando maradona - Report images
Shopping
More

Show search tools
Diego Armando Maradona | Facebook
www.facebook.com/pages/Diego-Armando-Maradona/14650999732

Diego Armando Maradona is on Facebook. To connect with Diego Armando People also search
Maradona, sign up for Facebook today. Sign UpLog In - Like - Profile Picture ...

MARADONA'S TRICKS - YouTube !!
www.youtube.com/watch?v=i_PP7QJwNpM _
30 Oct 2006 - 4 min - Uploaded by maverenzo . ,
Diego Maradona - The Best Of El Pibe de Oro 8:45. Watch Later Pele b‘fé’;z'l

Diego Armando Maradona - YouTube
www.youtube.com/watch?v=cx0a2ykZdSc

§ 28 Feb 2012 - 20 min - Uploaded by wnapoli2012

s L |IL CALCIO : DIEGO ARMANDO MARADONA . E considerato il
' ip" Py miglior calciatore di tutti i tempi , ha ..

PENNELLI CERVI

More videos for diego armando maradona »

Google

Search

Web
Images
Maps
Videos
News
Shopping

More

Show search tools

’diego arm ’ “

diego arman\ \maradona
diego arman)

dlegoamand A prefix search on a dictionary of strings

diego armus

containing past queries
Diego Maradq jo Maradona
en.wikipedia.org/w\h / _
Diego Armando Maradona Franco (Spanish pronunciation: ['djeyo mara'8ona]; born 30
October 1960) is a retired Argentine football player, and current ...

» Al Wasl| FC - Argentina 2-1 England (1986 ... - Sergio Aglero - Diego Sinagra

& -

Images for diego armando maradona - Report images

A

Diego Armando Maradona | Facebook
www.facebook.com/pages/Diego-Armando-Maradona/14650999732

Diego Armando Maradona is on Facebook. To connect with Diego Armando People also search
Maradona, sign up for Facebook today. Sign UpLog In - Like - Profile Picture ...

MARADONA S TRICKS - YouTube
www.youtube.com/watch?v=i_PP7QJwNpM
30 Oct 2006 - 4 min - Uploaded by maverenzo . ,
.‘ Diego Maradona - The Best Of El Pibe de Oro 8:45. Watch Later Pele b;onel‘
w1 Error Diego Maradona - The Best Of El ... s

Diego Armando Maradona - YouTube
www.youtube.com/watch?v=cx0a2ykZdSc

28 Feb 2012 - 20 min - Uploaded by wnapoli2012

v IL CALCIO DIEGO ARMANDO MARADONA . E considerato il

& PENNELLI CERVL

More videos for diego armando maradona »

GO\ ,glC ‘ diego arm ’ “

diego arman\ \maradona
diego arman)

Search i . L. .
cegoamang A prefix search on a dictionary of strings
iego armus
containing past queries
Web Diego Maradq go Maradona
en.wikipedia.org/v% yo— ___/ e
Images Diego Armando Maradona Fra aal_bors 30) oS

October 1960) is a retired Argen

:::s Alwasi Fe - aentina 2-1 8 Trrje js the classical efficient solution.
- images for diego armand| ~ Each |eaf corresponds to a query.
Shopping

More

Show search tools
Diego Armando Maradona | Facebook
www.facebook.com/pages/Diego-Armando-Maradona/14650999732

Diego Armando Maradona is on Facebook. To connect with Diego Armando People also search
Maradona, sign up for Facebook today. Sign UpLog In - Like - Profile Picture ...

MARADONA'S TRICKS - YouTube
www.youtube.com/watch?v=i_PP7QJwNpM
30 Oct 2006 - 4 min - Uploaded by maverenzo

Diego Maradona - The Best Of El Pibe de Oro 8:45. Watch Later Pele k/ilzgili

Loy

Dleqo Armando Maradona - YouTube
b www.youtube.com/watch?v=cx0a2ykZdSc
28 Feb 2012 - 20 min - Uploaded by wnapoli2012
o fassies |L CALCIO : DIEGO ARMANDO MARADONA . E considerato il
e Iyl miglior calciatore di tutti i tempi , ha ..

PENNELLI CERVL

More videos for diego armando maradona »

Google

Search

Web
Images
Maps
Videos
News
Shopping

More

Show search tools

diego arm |

diego arman\ x\maradona
diego arman)

dlegoamand A prefix search on a dictionary of strings

diego armus

containing past queries
Diego Maradq jo Maradona
en.wikipedia.org.v'w\% j
Diego Armando Maradona Frange{Soanich aranunciation: [diaua maca Aonal hors 30
October 1960) is a retired Argen

Alwasl FC - Agentina -1 8 Trja js the classical efficient solution.
images for diego armand| Each leaf corresponds to a query.

- g r= R —
e

A search for each symbol we digit
=>
Trie must fit in RAM

Diego Armando Marado

Diego Armando Maradona is

www.facebook.com/pages;’Dieg{L

Maradona, sign up for Faceboo

~J Ll -~

MARADONA S TRICKS - YouTube

www.youtube.com/watch?v=i_PP7QJwNpM

t‘ 30 Oct 2006 - 4 min - Uploaded by maverenzo ; _
. S -@ Diego Maradona - The Best Of E| Pibe de Oro 8:45. Watch Later Pele Lionel
m Error Diego Maradona - The Best Of El ...

Diego Armando Maradona - YouTube
! www.youtube.com/watch?v=cx0a2ykZdSc
28 Feb 2012 - 20 min - Uploaded by wnapoli2012
3 S—) s |L CALCIO : DIEGO ARMANDO MARADONA . E considerato il
K - TRy miglior calciatore di tutti i tempi , ha ..

PENNELLI CERVL

More videos for diego armando maradona »

GO-‘. /gl‘e diego arm | ﬁ

diego arman\ x\maradona
diego arman)

S h - . . *
0arc diegoarmand A prefix search on a dictionary of strings

diego armus
containing past queries
Web Diego Maradq jo Maradona
en.wikipedia.org!% S— _,j I
Images Diego Armando Maradona Fra nal bhors 30 >

October 1960) is a retired Argen
FC - Argentina 2-1

153,645,450 r dleqo arman
distinct queries "
in 6 weeks Altavista

query log

Maps

Trie is the classical efficient solution.
Each leaf corresponds to a query.

A search for each symbol we digit

mando Marado =>
www.facebook.com/pages/Dieg . .
Diego Armando Maradona iscL Trle mUSt ﬁt IN I{AM

Maradona, sign up for Faceboo

MARADONA'S TRICKS - YouTube
www.youtube.com/watch?v=i_PP7QJwNpM
30 Oct 2006 - 4 min - Uploaded by maverenzo ; ,
. > i‘ Diego Maradona - The Best Of El Pibe de Oro 8:45. Watch Later Pele Lionel
: m Error Diego Maradona - The Best Of El ...

Diego Armando Maradona - YouTube

b www.youtube.com/watch?v=cx0a2ykZdSc
28 Feb 2012 - 20 min - Uploaded by wnapoli2012
_-a‘.t«» IL CALCIO : DIEGO ARMANDO MARADONA . E considerato il
e Iyl miglior calciatore di tutti i tempi , ha ..

' PENNELLI CERVL

More videos for diego armando maradona »

GO\ /816 ‘ diego arm ’ “

diego arman\ \maradona
diego arman)

Search i . L. .
cegoamang A prefix search on a dictionary of strings
iego armus
containing past queries
Web Diego Maradq go Maradona
en.wikipedia.org/v% yo— _j R
Images Diego Armando Maradona Fra Sonal bhors 30 -

October 1960) is a retired Argen
FC - Argentina 2-1

153,645,450 rdieqo aran
distinct queries '

in 6 weeks Altavista EF780F,
query log _— A search for each symbol we digit
=>
Trie must fit in RAM

Maps . . 5 . .
Trie is the classical efficient solution.

Each leaf corresponds to a query.

mando Marado
www.facebook.com/pages/Dieg
Diego Armando Maradona is ¢

L AL AN

Tree + Edges labels + Text =12 Gbytes
(assuming queries of 5 symbols each)

Diego Armando Maradona - YouTube
RET www.youtube.com/watch?v=cx0a2ykZdSc

ERVL
PN == 28 Feb 2012 - 20 min - Uploaded by wnapoli2012
 SEEt] Lesi. IL CALCIO : DIEGO ARMANDO MARADONA . E considerato il
pRs= NPT miglior calciatore di tutti i tempi , ha ...

More videos for diego armando maradona »

GO /8 ‘5 diego arm
diego arman
diego armand

Search diego armanc
diego armus

A prefix search on a dictionary of strings

containing past queries
jo Maradona
en.wikipedia.org/w yr—
Diego Armando Maradona Frang=
October 1960) is a retired Argen

Fc-awentina 2-18 Trje s the classical efficient solution.
153,645,450 r di andl Each leaf corresponds to a query.

distinct queries
in 6 weeks Altavista

query log

mando Marado

www.facebook.com/pages/Dieg . .
Diego Armando Maradona is ¢ T”e mUSt ﬁt IN RAM

Tree + Edges labels + Text =12 Gbytes
(assuming queries of 5 symbols each)

Compressed Tree + Compressed text with fast decompression < 800 Mbytes

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 201 |

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 201 |

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 201 |

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Graphs

FOCS, 1997
DCC, 2001
WWW, 2004
ESA, 2008
FOCS, 2009

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Labeled
Trees
e.g. XML

FOCS, 2005
WWW, 2006
SODA, 2007

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 201 |

Functions

ICALP, 2003
ICALP, 2004
SODA, 2004
ICALP, 2008
ESA, 2009

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Point Sets

SODA, 2003
TALG, 2007
WADS, 2009
SODA, 201 |
SOCG, 201 |

Graphs

FOCS, 1997
DCC, 2001

WWVWy, 2004

ESA, 2008
FOCS, 2009

Hashing

SODA, 2004
SODA, 2009
ESA, 2009
ICALP, 2009
SODA, 2013

Active field of research

Integers

FOCS, 1989
FOCS, 1997
SODA, 2002
FOCS, 2008
SODA, 2010

Labeled
Trees
e.g. XML

FOCS, 2005
WWW, 2006
SODA, 2007

Text

STOC, 2000
FOCS, 2000
SODA, 2001
SODA, 2007
PODS, 201 |

Functions

ICALP, 2003
ICALP, 2004
SODA, 2004
ICALP, 2008
ESA, 2009

Trees

FOCS, 1989
FOCS, 1997
SODA, 2002
SODA, 2007
SODA, 2010

Point Sets

SODA, 2003
TALG, 2007
WADS, 2009
SODA, 201 |
SOCG, 201 |

Graphs

FOCS, 1997
DCC, 2001

WWVWy, 2004

ESA, 2008
FOCS, 2009

Hashing

SODA, 2004
SODA, 2009
ESA, 2009
ICALP, 2009
SODA, 2013

Maximize Compression and
Efficiently Access and Search

Compressor’s performance
optimization

a text T[1,n] and compressor

an optimal partition of | in blocks
such that compress size achieved by
compressing them individually with C is
better than that of the whole

Why!

Why!

’ O Qj

bits
logn)

| X

Hy(T) + O(

] .
etic

rithm

e.g., A

Why!

cC-Mn: H()(T) + f(n, Z) bits

e.g.,Arithmetic n- Ho(T) 4+ O(] X | log n)bits

TAAAAAAAABBEBBBBES

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits

T AAAAAAAABBEBBBBESB

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits

T AAAAAAAABBEBBBBESB

n + log n bits

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits

T AARRARAAREEEREEEEE

n + log n bits

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits

T AARRARAAREEEREEEEE

n + log n bits

n log n bits

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits

T AAAAAAAABBEBBBBES

Why!

c-n-Hy(T)+ f(n,X)bits

e.g.,Arithmetic n- Ho(T) + O(] 2 | logn)bits
T [AAAAAAAABBEBBEBBEBE

n + log n bits
n log n bits

0 + 2 log n bits

Result

Result

® Optimal partition can be found with Dynamic
Programming in O(n?) time

® Not usable in practice for texts longer than few Mbs

Result

® Optimal partition can be found with Dynamic
Programming in O(n?) time

® Not usable in practice for texts longer than few Mbs

® For any fixed parameter €>0, our algorithm computes an
-approximation of the optimal partition in
time and linear space

Result

® Optimal partition can be found with Dynamic
Programming in O(n?) time

® Not usable in practice for texts longer than few Mbs

® For any fixed parameter €>0, our algorithm computes an
-approximation of the optimal partition in
time and linear space

® The idea is exploiting a particular property of the cost
function to speed up Dynamic programming solution

® The property (monotonicity) is quite common. Thus, the idea can be
used in other contexts.

Lempel-Ziv 77

a text T[I,n]

find the optimal LZ77 parsing of T
(i.e., the parsing that minimizes the
compress size)

Lempel-Ziv 77

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2)

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2) (0,b)

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2) (0,b) (2,3)

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,a) (O,b) (2,3) (1,3)

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

(0,a) (O,b) (2,3) (1,3) (7,8)

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

Encode distances and lengths with two uniquely

(0,a) (O,b) (2,3) (1,3) (7,8) decodable encoding functions

fgn]—{0,1}"

Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

Encode distances and lengths with two uniquely

(0,a) (O,b) (2,3) (1,3) (7,8) decodable encoding functions

fgn]—{0,1}"

Greedy strategy wastes space

T ...abacdde ... abaecdde abacddf ...

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abaecdde abacddf ...

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abaecdde abacddf ...

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abaecdde abacddf ...

2k

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abaecdde abacddf ...

2k

= |f(2Y)| = log 2* = k bits

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abaecdde abacddf ...

2k

= |f(2Y)| = log 2* = k bits

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ...cdde abacddf ...

2k

= |f(2Y)| = log 2* = k bits

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
R —
T ...abacdde ... abae ...cdde abacddf ...
2k

= |f(2Y)| = log 2* = k bits

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
R —
T ...abacdde ... abae ...cdde abacddf ...
2k

= |f(2Y)| = log 2* = k bits
Cost < 2|f(2")| = 2log 2" = 2h bits

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde abacddf ...

2k
= |f(2Y)| = log 2* = k bits
Cost < 2|f(2")| = 2log 2" = 2h bits
Non greedy strategy is better if h < k/2

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde abacddf ...

2k

Non greedy strategy is better if h < k/2

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde abacddf ...

2k

Non greedy strategy is better if h < k/2

good in practice!

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde abacddf ...
2k

Cc
Non greedy strategy is better if h < k/2

bits

File ||English|| HTML |Sources

gOOd in practice? Bwt |/206%117.3% || 3.8%
LZ-fix 1[26.1% 1[24.6% || 2.9%

Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

abacddf ...

Fast in decompression!

- 0.8 vs 20 secs x 50Mbs

bits
Non greedpPstrategy is better if h < k/2

File ||English|| HTML |Sources

gOOd in practice? Bwt |/206%117.3% || 3.8%
LZ-fix 1[26.1% 1[24.6% || 2.9%

Lempel-Ziv 77

Lempel-Ziv 77

® Optimal parsing can be found with Dynamic
Programming in O(n?) time

Lempel-Ziv 77

® Optimal parsing can be found with Dynamic
Programming in O(n?) time

® Our algorithm computes the optimal LZ77-parsing in
time and linear space

Lempel-Ziv 77

Optimal parsing can be found with Dynamic
Programming in O(n?) time

Our algorithm computes the optimal LZ77-parsing in
time and linear space

The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

® The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

Lempel-Ziv 77

Optimal parsing can be fg
Programming in O(n?) ti

vith Dynamic

Our algorithm comp
time and

1al LZ77-parsing in
Many

missing
The idea is explo details! . cost function to
speed up Dynar)

® The propel‘tiea \UITUTTULUILIICILy alld Spal ity) ai © yuilc Common.ThUS, the
idea can be used in other contexts.

Lempel-Ziv 77

Optimal parsing can be found with Dynamic
Programming in O(n?) time

Our algorithm computes the optimal LZ77-parsing in
time and linear space

The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

® The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

in practice!

Lempel-Ziv 77

Optimal parsing can be found with Dynamic
Programming in O(n?) time

Our algorithm computes the optimal LZ77-parsing in
time and linear space

The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

® The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.

File ||English{| HTML |Sources| Pec. time
Bwt 20.6% || 17.3% || 3.8% 20.2 s

° ° 7
INn practice! 1Z7-6x 1126.1% |[24.6% [2.9%] [0.8 s
LZ-OPT|[21.6% [17.6% || 3.8%| [09s

Lempel-Ziv 77

Optimal parsing can be found with Dynamic
Programming in O(n?) time

The idea is €% cost function to
speed Up il

® The propertig o are quite common. Thus, the
idea can bé usean

File |[English|| HTML |Sources| pDec. time

. .) Bwt 20.6% || 17.3% || 3.8% 20.2 s
In PraCtlce° LZ-fix ||26.1% || 24.6% || 4.9% 0.8 s
LZ-OPT||21.6% ||17.6% || 3.8% 0.9s

Compressed Scheme with
optimal access

° a text T[I,n]

° design a compressed scheme able to
access any portion of T in optimal time
(i.e., w bits of information in O(1) time)

® Space is bounded in terms of k-th order entropy
of T (Hi(T) + o(n log |2]) bits)

Simple scheme with interesting analysis

ob =1V IogO n
o # blocks = n/b = O(n / log n)

e #distinct blocks = O(c?) = O(n*)
\

e

Aduanbalj

Simple scheme with interesting analysis

.b=1/zlogOn

e # blocks = n/b = O(n /

Building block for
many subsequent
compressed DSs

Aduanbalj

Compressed Full-text Indexing

Compressed Full-text Indexing

a text T[1,n]

Count(P): # times string P[|,p] occurs in T
Locate(P): positions of the occurrences of P[1l,p] in T
Extract(i,j): return T[i,j]

Compressed Full-text Indexing

a text T[1,n]

Count(P): # times string P[|,p] occurs in T
Locate(P): positions of the occurrences of P[1l,p] in T
Extract(i,j): return T[i,j]

but not compressed

Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: O(n log n) bits --- in practice 5x-20x the text size

Compressed Full-text Indexing

a text T[1,n]

Count(P): # times string P[|,p] occurs in T
Locate(P): positions of the occurrences of P[1l,p] in T
Extract(i,j): return T[i,j]

but not compressed
Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: O(n log n) bits --- in practice 5x-20x the text size

but slow
Zgrep: uncompress and scan-based algorithm
Time: O(n)
Space: LZ77 compression

Compressed Full-text Indexing

a text T[1,n]

Count(P): # times string P[|,p] occurs in T
Locate(P): positions of the occurrences of P[I,p] in T
Extract(i,j): return T[i,j]

but not compregssed

Suffix Tree, Suffix Array ...
Time: O(|P|+occ)
Space: O(n lgg 0l B
Compressed Full-text

Indexes

PC text size

Zgrep: uncomig
Time: O(n)
Space: LZ77 comp

Compressed Full-text Indexing

Suffix Array’s operations but in

FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter, STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Compressed Full-text Indexing

Suffix Array’s operations but in

FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter, STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Studies at a theoretical stage. No experimental comparison.

Compressed Full-text Indexing

Suffix Array’s ope W ,:

FM-index [F
CSA [Gross:#
LZ-index [Ng .

Studies at a theoretical stage. No experimental comparison.

Algorithmic engineering and experimetal effort

@ @ @ @ ﬁ fU http://pizzachili.di.unipi.it/ ¥ @ GlGoogle

PlL—La&Chlll CoerS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

Home\ hdexColectionI TextColection\ Ap|| Bmermdsm\ The Initiative ~ Additional Material

The Prologue

The new millennium has seen the born of a new class of full-text indexes which are structurally similar to Suffix Trees and Suffix Arrays, in that
they support the powerful substring search operation, but are succinct in space, in that it is close to the empirical entropy of the indexed data.
They are therefore called compressed Suffix Trees and compressed Suffix Arrays, or in general compressed indexes.

In the literature we counted more than 20 papers authored by more than 20 different researchers. This interest is motivated by the large
availability of textual data in electronic form, by the ever increasing gap in performance among the memory levels of current PCs, and by the "non

negligible” space occupancy of classic data structures like Suffix Trees and Suffix Arrays which are pervading the Biolnformatics and the Text
Mining fields.

Don Knuth already observed, in its famous 3rd Volume on the Art of Computer Programming, that "space optimization is closely related to time

optimization in a disk memory”. So we believe that compressed indexes may become a crucial tool for the design of sophisticated and efficient

software solutions given the ubiquity of indexing data structures in them. We nevertheless note that the algorithmic technology underlying these

compressed indexes stays not at an undergraduate level. Consequently the implementation of any known compressed index requires much |
engineering effort, a strong algorithmic background, and still the final program may possibly not achieve its best performance!

This site has two mirrors: one in Italy and one in Chile. Hence you can argue the why of its name ;-) Its ultimate goal is to push towards the
technology transfer of this fascinating algorithmic technology lying at the crossing point of data compression and data structure design. In order
to achieve this goal the Pizza&Chili site offers publicly available implementations of compressed indexes. Each implementation follows a suitable
API of functions which should, in our intention, allow any programmer to plug the provided compressed indexes within their own software and

play with their functionalities and efficiency. The site also offers a collection of texts for experimenting and validating compressed indexes. In
detail it offers three kinds of material:

» A set of compressed indexes which are able to support the same search functionalities of Suffix Trees and Suffix Arrays (e.g., substring
searches), but requiring succinct space occupancy and offering, in addition, some text access operations that make them useful within
text retrieval and mining software systems.
» A set of text collections of various types and sizes to test experimentally the available compressed indexes, or the new compressed
indexes that researchers like to submit to this site. The text collections have been selected to form a representative sample of different
applications where indexed text searching might be useful. The sizes of these texts are large enough to stress the impact of data
compression over memory usage and CPU performance. The goal of experimenting with this testbed is to conclude whether, or not,
DS 0l0 AIO 111~ dl UVE OIS OIO AIO dlDI0GCTE - 11X 2ES 4l T1X AIT3 -I‘I SEltlS v

f;:) (= ‘ﬁ () http://pizzachili.di.unipi.it/indexes html v @) [Glcoogle 0Q }
!

P|:88Ch|]| COI-DUS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

The Index Collection

Up to now, the following compressed indexes have been implemented and made available in this site:

= Suffix Array

= Succinct Suffix Array

= Alphabet-Friendly FM-Index

= Compressed Compact Suffix Array
= Run Length FM index

= FM-Index

s LZ-index

= Compressed Suffix Array

= Repair Suffix Array

Send Mailto Us | © P. Ferragina and G. Navarro, Last update: September, 2005.

Google oQ)

A

P|zza&Ch||| CoerS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

We are particularly interested in self-indexes, namely compressed indexes that encapsulate sufficient information to reproduce any substring of
the indexed text, and thus possibly the text itself. If a compressed index is not a selfindex, then one must keep the text together with the index
and report the text size plus the index size.

To use a compressed index over a text, we first have to build it, and then we can either query it to count or locate the occurrences of the queried

pattern, or we can access some snippets of the indexed text for displaying the context of a pattern occurrence, or for retrieving some text
substrings (possibly the whole text).

Indexes are used through the following API interface, written in the C/C++ language. We actually use uchar for denoting unsigned char and
ulong for denoting unsigned long. The interface assumes that each text symbol is represented in one byte. The integer e returned by any
procedure indicates an error code, If different of zero. The error message can be accessed by calling the procedure char *error_index(e).
We further recall that text and pattern indexes start at zero. Below you find a schematic summary of the API interface offered by all the
compressed indexes available for downloading. Please read carefully the COPYRIGHT information that comes with each of them.

Building the index

Function Parameters Comment
uchar *text, Creates index from text[0.. length-1]. Note that the index is an opaque data type. Any build
int build index ulong length, option must be passed in string build_options, whose syntax depends on the index. The
- char*build_options, index must always work with some default parameters if build_options is NULL. The
void *index returned index is ready to be queried.
: . void *index,
int save_index char *filename Saves index on disk by using single or multiple files, having proper extensions.
.

M

‘) @ @ ‘(/ﬁ " () http:f/pizzachili.di.unipi.it/texts.html 2 (D [ICGlGoogle oQ)

Pl.f_—La&Chlll CoerS The Italian mirror The Chilean mirror .
Compressed Indexes and their Testbeds

Home] hdexColectionl TextColection‘ API| Expermentdsmp| The Initiative Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application areas where the problem of full-text indexing might be relevant, and for each of them selected texts freely available over the
web. Second, we aimed at maintaining the number of these texts reasonably small in order to avoid long experiments and unreadable tables of
results. In particular, we have only one text of each type. Finally, the size of the texts has been chosen large enough to make indexing relevant
and compression apparent. Note however that experimenting may be performed at different scales, depending on users' RAM, by using the tool
cut which allows one to limit the indexed text to any possible length (see below).

Follow the links of each type of text to reach a directory containing one gzipped file, <flename>.gz. Download and gunzip this file to get the
original text file, <flename>. The directory also contains other files, named <filename>.<X>MB.gz. These are prefixes of <filename> of <X>
megabytes. Of course, some of these files may not exist if <filename> is not long enough.

These are the current collections provided in the Pizza&Chili repository:

» SOURCES (source program code). This file is formed by C/Java source code obtained by concatenating all the .c, .h, .C and .java files of
the linux-2.6.11.6 and gcc-4.0.0 distributions. Downloaded on June 9, 2005.

» PITCHES (MIDI pitch values). This file is a sequence of pitch values (bytes in 0-127, plus a few extra special values) obtained from a
myriad of MIDI files freely available on Internet. The MIDI files were processed using semex 1.29 tool by Kjell Lemstrom, so as to convert
them to IRP format. This is a human-readable tuple format, where the 5th column is the pitch value. Then the pitch values were coded in
one byte each and concatenated. Downloaded during April 2005.

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

u [\ l'l‘l'. ‘ 2 | i~ Ol,‘l.lll IOI . - i~ = nm etextl! n etextl! L ll 1 AL

M

File Edit View History Bookmarks Tools Help S

@ @ @) m " () http://pizzachili.di.unipi.it/texts.html ¥ @ 500qle oQ)

A
a

Pizza&Chili COprS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

Homey mdexColectiony TextColection\ Apl\ Experimentalsamy The Initiative Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application area ~\ the

web. Second, we aim les of
results. In particular, levant

and cormpression a0 A they of practical impact!? J too

cut which allows one t

Follow the links of eac he
original text file, <fileng (>
megabytes. Of course

These are the current {

s SOURCES (sol files of
the linux-2.6.11

= PITCHES (MIDI a
myriad of MIDI ronvert
them to IRP for ded in

one byte each

J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

u [\ u ‘l.l . . 2 | 1= ll.‘l.lll l.l - - i~ = nm etextl! n etextl) L ll 1 A

Done 0O 2. M

File Edit View History Bookmarks Tools Help s
@ @ @) m " () httpy/pizzachili.di.unipi.it/texts.html 2 (|G| Google oQ"

Pizza&Chili CoerS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

Home\ mdexColection\ Te:aColection] AP|| Experimentalsamy The Initiative Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative

set of application area ~\ the
web. Second, we aim les of
results. In particular, . . levant
and cormpression a0 A they of practical impact!? Je too
cut which allows one t
Follow the links of eac he
original text file, <filena . o) (>
meganyies 0fcouse| = CouNt(P) takes 2 microsecs/char -- 50% space
These are the current {
s SOURCES (sol files of
the linux-2.6.11
= PITCHES (MIDI a
myriad of MIDI ronvert
them to IRP for led in
one byte each
J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

[s A (enalish tex 1 - he caoncatenation o nalish tex - slected from etextl) n etextl] nllections o anhero v

Done 0O 2. M

IEIe Edit View History Bookmarks Tools Help &

@) @ @) ﬂ " () httpyJpizzachili.di.unipi.it/texts.html 3 IGlGoogle oQ)

Pizza&Chili CoerS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

uome\ Index Conection\ Text Conection\ API\ Experimental Setup\ The Initiative ~ Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application area ~\ the

web. Second, we aim les of
results. In particular, levant

and cormpression a0 A they of practical impact!? J too

cut which allows one t

Follow the links of eac ho
original text file, <filena

meganyies 0fcouse| = CouNt(P) takes 2 microsecs/char -- 50% space (5x slower!)

These are the current {

s SOURCES (sol files of
the linux-2.6.11

= PITCHES (MIDI a
myriad of MIDI ronvert
them to IRP for ded in

one byte each

J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

[s H nalish : 1 - he caoncatenation o nalish tex - slected from etextl) n etext nllections o nhero v

Done 0O €. M

File Edit View History Bookmarks Tools Help &

@) @ @) ﬁ '@ http://pizzachili.di.unipi.it/texts.html ¥ f 500gle OQ\

Pizza&Chili COprS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

uome\ Index Collection‘ Text Conection} Apl\ Experimental Setup‘ The Initiative ~ Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application area ~\ the

web. Second, we aim les of
results. In particular, levant

and cormpression a0 A they of practical impact!? J too

cut which allows one t

Follow the links of eac ho
original text file, <filena

meganyies 0fcouse| = CouNt(P) takes 2 microsecs/char -- 50% space (5x slower!)

These are the current {

= sourees ol Extract | Mb/sec files of
the linux-2.6.11

= PITCHES (MIDI a
myriad of MIDI ronvert
them to IRP for led in

one byte each

J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

[s A (enalish : 1 - he caoncatenation o nalish tex - slected from etextl) n etext nllections o nhero v

Done 0O €. M

Fle Edit View History Bookmarks Tools Help 3%

@) @ O ﬁ " () httpyJpizzachili.di.unipi.it/texts.html 2 @ IGlGoogle oQ

Pizza&Chili COprS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

Home Index Collection Text Collection API Experimental Setup ~The Initiative Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application area ~\ the

web. Second, we aim les of
results. In particular, levant

and cormpression a0 A they of practical impact!? J too

cut which allows one t

Follow the links of eac ho
original text file, <fileng

meganyies 0fcouse| = CouNt(P) takes 2 microsecs/char -- 50% space (5x slower!)

These are the current {

= sourees ol Extract | Mb/sec files of
the linux-2.6.11

o PIT(;HES (MIDI .
et o 101- - Locate(P) takes |5 microsecs/occ -- 70% space onier

one byte each

J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

u [\ u 10 1 . i - il L aleilaii0r () 10 L1 X - - = nm etextl) n etextl] e i 1 (1L U v

Ele Edit View History

Bookmarks Tools Help o

@) O @ O & @ http://pizzachili.di.unipi.it/texts.html 2 @ [[GlGoogle oQ’

Pizza&Chili Corpus

The Italian mirror The Chilean mirror

Compressed Indexes and their Testbeds

Home_ Index Collection Text Collection APl Experimental Setup The Initiative Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative

set of application area
weh. Second, we aim
results. In particular,

and compression app
cut which allows one t

Follow the links of eac
original text file, <fileng
megabytes. Of course

These are the current {

s SOURCES (sol
the linux-2.6.11

= PITCHES (MIDI
myriad of MIDI
them to IRP for
one byte each

~\ the

les of .
levant

Are they of practical impact? o ool

hg

- Count(P) takes 2 microsecs/char -- 50% space (5x slower!)

- Extract | Mb/sec fles of

- Locate(P) takes |5 microsecs/occ -- 70% space Csodx sIower!)
J

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare
proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,

2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

1 . i - Al L AlS 0100 () (10 L1 X - - =L nm etextl) n etextl] e il 1 (1L U v

Pattern matching on
Dictionary of Strings

Introduction to
Information

Retrieval «-

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Introduction to
Information

Retrieval «-

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need D to avoid false-positive

Introduction to |
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings ’ '
w

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need D to avoid false-positive
Solve only Id < String

Introduction to
Information

Retrieval «-

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Introduction to
Information

Retrieval «-

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need node/edges pointer

Introduction to |
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings ’ '
w

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need node/edges pointer
Need D to retrive edges' labels

Pattern matching on
Dictionary of Strings

—m dictionary D of strings ’ '
Introduction tol‘ .
Information |ld & String
Retrieval Prefix(P): strings prefixed by P[1,p]
e e Suffix(P): strings suffixed by P[1,p]
[N PrefixSuffix(FQ): strings prefixed by P[I,p] and suffixed by Q[l.q]

Need node/edges pointer
Need D to retrive edges' labels
Need Ids

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need node/edges pointer
Need D to retrive edges' labels

Need Ids
Suffix query needs Trie on DR

Introduction tcl>l
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings ' '
w

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

Need node/edges pointer
Need D to retrive edges' labels

Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ©(occP+occQ)

Introduction tcl>l
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings ' '
w

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

I VN [IWwW W/ v\.lé\.au PP

Need D to retrive edges' labels

Need Ids
Suffix query needs Trie on DR

PrefixSuffix query have to intersect the results ©(occP+occQ)

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

I N\ \Ww\d 1 1W W/ \-ﬂ\lé\-ﬂu rIVll T Wi
I N\ Wwld Lo LW | WLl 1V \—\Ié\ah) IUUW\IJI

Suffix query needs Trie on DR
PrefixSuffix query have to intersect the results ©(occP+occQ)

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

I NN Wl 11w/ \a\.lé\.au FVII LI S 1 |
I N\ Wwld Lo LW | WLl 1V \—\Ié\ah) IUUW\IJI
Nl dI1d.

I N\ \w\d T\Jdw

Suffix query needs Trie on DR
PrefixSuffix query have to intersect the results ©(occP+occQ)

Introduction to
Information

Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

I NN Wl 11w/ \a\.lé\.au FVII LI S 1 |

I N\ Wwld Lo LW | WLl 1V \—\Ié\ah) IUUW\IJI

Nl dI1d.

I N\ \w\d T\Jdw

Cl I:n\l F_ ANV .. AW,J hAAAﬁ T":A -~ N I .R
- Wil

wNALLIZN \1UIVI I 11 W W L I B |

PrefixSuffix query have to intersect the results ©(occP+occQ)

Introduction to |
Information
Retrieval

Pattern matching on
Dictionary of Strings

dictionary D of strings

|ld & String

Prefix(P): strings prefixed by P[I,p]
Suffix(P): strings suffixed by P[I,p]
PrefixSuffix(P,Q): strings prefixed by P[|,p] and suffixed by Q[I,q]

I VN [IWwW W/ v\.lé\.au PP

kIAAA n dm o s dmnars ao AA‘—AA' IALAIA

1 N\ wid L WLW I Wil VW \—\Ié\ag IUUWNIJD

Nl ~d I1d~

I N\ \w\d T\Jdw

Cl lrn\l F_ RV _WT.AW,) lﬁl\l\Aﬁ Tlﬁ:l\ S N nR

wNALLIZN \1UIVI I 11 W W L I B |

DIAA“I\ICI l‘pl\l TR W7 W) L\A\'A PR TP S yn A-IAA L~ o o n -IA-A D/AAADJ—AAAA\

I \wllI/ZNULL N \.IU\.—I I TV W WUW HTIVWw] el LUiWw | WOl W V\V\-\-I b V\-\-Yl

Pattern matching on
Dictionary of Strings

search Prabhakar Raghavan
Hinrich Schitze

E—. dictionary D of strings ' ’
| w

Introduction to

Information |ld & String
Retrieval :
Prefix(P): strings prefixed by PLLE
Suffix(P): strings sufﬁxed by PJ i hie
— ' oo PrefixSuffix(P,Q): strings prefi
Trie 1374.29%
FC-32 109.95%
FC-128 107.41%
MNeed-nedeledges-peinter FC-1024 106.67%
Need-D-te-retrive-cdges-lab iy gt 49.72%
Nlood I CPI-CSA-64 37.82%
T e Y: CPI-CSA-128 31.57%
L A A CPI-CSA-256 28.45%

DIAA“I\ICI l‘pl\l TR W7 W) L\A\'A b 2 b

FTCHIAVUITINA HUuel g riave v inic CPI—FMI—256 2427%
CPI-FMI-512 18.94%
CPI-FMI-1024 16.12%

Pattern matching on
Dictionary of Strings

search Prabhakar Raghavan
Hinrich Schitze

E—. dictionary D of strings ' ’
| w

Introduction to

Information |ld & String
Retrieval :
Prefix(P): strings prefixed by P
Suffix(P): strings sufﬁxed by PJ i hie
— ' oo PrefixSuffix(P,Q): strings prefi
Trie 1374.29%
FC-32 109.95%
FC-128 107.41%
MNeed-nedeledges-peinter FC-1024 106.67%
Need-D-te-retrive-edges-lab{ Q! 49.72%
Nlood I CPI-CSA-64 37.82%
T ey | CPI-CSA-128 31.57%
L e A) CPI-CSA-256 28.45%

DIAA“I\ICI l‘pl\l TR W7 W) L\A\'A b 2 b

FTCHIAVUITINA HUuel g riave v inic CPI—FMI—256 2427%
CPI-FMI-512 18.94%
CPI-FMI-1024 16.12%

Pattern matching on
Dictionary of Strings

search Prabhakar Raghavan
Hinrich Schitze

— dictionary D of strings ' ’
| w

Introduction to

Information |ld & String
Retrieval ,
Prefix(P): strings prefixed by PLLp
- Suffix(P): strings suffixed by P [o1 .
— PrefixSuffix(P,Q): strings prefi
Trie 1374.29%
FC-32 109.95%
FC-128 107.41%
Nland A dA/lAadecAac mAlntEA FC—1024 A.AT0

I NN\ Wwd 11w \-ﬂué\-ﬂu rIVIl [S =4 |

N PO I WS e s N § CPT-AFT

1 N\ wid L WLW I Wil VW \—\JS\‘J TCLWS N

Nl d I CPI-CSA-64 et

0L70
U S | CPT-CSA-128 31.57%
AL Al | CPT-CSA-256 28.45%

DIAA“I\ICI l‘pl\l TR W7 W) L\A\'A b 2 b

FTCHIAVUITINA HUuel g riave v inic CPI—FMI—256 2427%
CPI-FMI-512 18.94%
CPI-FMI-1024 {16.12%%

Pattern matching on
Dictionary of Strings

search Prabhakar Raghavan
Hinrich Schitze

— dictionary D of strings ' ’
| w

Introduction to

Information |ld & String
idE L Prefix(P): strings prefixed by PLLp

- Suffix(P): strings sufﬂxed by P[pies

' oo PrefixSuffix(P,Q): strings prefi
1374.29%
JY.9I070
FC-128 107.41%
MNeed-nedeledges-peinter FC-1024 106.67%
Meecd-D-toretrive-cdges-lab Ui 49.72%
NI P P CPI-CSA-64 37.82%

I N\ \w\d T\Jdw

T e Y: CPI-CSA-128 31.57%
SHHDEGUSH)-Reeas—Hie-Ch-=

all CPI-CSA-256 28.45%
RrefixSulfpeguery-have-to-int o e g LS 24.27%

Maximize Compression and
Efficiently Access and Search

Maximize Compression and
Efficiently Access and Search

Maximize Compression and
Efficiently Access and Search

N
Multi-core processors

External Memory GPUs

Solid disk

Maximize Compression and
Efficiently Access and Search

N
Multi-core processors

External Memory GPUs

4)
Distributed Computing

Solid disk Cloud computing

Maximize Compression and
Efficiently Access and Search

N
Multi-core processors

External Memory GPUs

4)
Distributed Computing

Solid disk Cloud computing

J
6@ > ’f" —<> =77

e O
- Ry e RY T4
tf»/ S » T a
?(/ Dy Prx =

Energy/Money

Maximize Compression and
Efficiently Access and Search

4)
Multi-core processors

External Memory GPUs

vy
Distributed Computing

Solid disk Cloud computing

Export ideas in

Energy/Money other fields

Maximize Compression and
Efficiently Access and Search

Circumvent Lower Bounds

Time lower bounds Space lower bounds

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries
- Prove all Q must require T(Q) time

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q uniformly at
random among a set of possible queries

- Prove all Q must require T(Q) time

- Worst case time per op at least T(Q)/|Q|

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermbmate
+andem among a set of possible queries

- Prove all Q must require T(Q) time

- Yorstense-time-perop-at-tease=-(3H¢

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermbmate
+andem among a set of possible queries

- Prove all Q must require T(Q) time

- Yorstense-time-perop-at-tease=-(3H¢

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermbmate
+andem among a set of possible queries

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution to reduce time complexity

e
c
e}
O
@
n

S~
(%3]
@
o
c
o
S
S
-
0
o
o

o
o
(2]
c

e

=

Distribution-Aware
Compressed Full-text Indexing

HTML Pages

Regular
Optimal
Greedy
HalfGreedy

Millions of occurrences / second

I
128

Sample rate Sample rate

10,000 patterns 10,000 patterns
|87 million of positions 276 million of positions

e
c
e}
O
@
n

S~
(%3]
@
o
c
o
S
S
-
0
o
o

o
o
(2]
c

e

=

Distribution-Aware
Compressed Full-text Indexing

HTML Pages

Regular
Optimal
Greedy
HalfGreedy

Millions of occurrences / second

Sample rate Sample rate

10,000 patterns 10,000 patterns
|87 million of positions 276 million of positions

Circumvent Lower Bounds

Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

No two objects can have the same
representation!

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice!?

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice!?

- Buy more memory!

Circumvent Lower Bounds

Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice!?

- Buy more memory!

- Design data structures without data.
DS has to err! but error rate can be
guaranteed

Compressed Functions

Compressed Functions

with D. Belazzougui, SODA 2013

problem

Compressed Functions

problem

City

New York
Rome
Madrid
Helsinki
Oslo
London
Athens

Berlin

with D. Belazzougui, SODA 2013

Compressed Functions

problem

City

with D. Belazzougui, SODA 2013

Weather

New York
Rome
Madrid
Helsinki
Oslo
London
Athens

Berlin

TETYYLY

Compressed Functions

with D. Belazzougui, SODA 2013

City Weather
fw New York @
problem Rome @
Madrid
Helsinki ,&
Oslo ﬁ
London J%?
Athens @
Berlin @

F:5CU — X

Compressed Functions

New York |
® Trie to search on domain of F
Rome @
® |eaves of this trie store the weather in Madrid @
the corresponding city |
Helsinki .ﬁ
® Space:size(domain) + size(image)
Oslo ﬁ
London %:
Athens @
Berlin @

F:5CU — X

Compressed Functions

New York Il
® Trie to search on domain of F Rome 0
® |eaves of this trie store the weather in Madrid @

the corresponding city ”
Helsinki .ﬁ

o Soace:size(domain) + sizefi

pace: size(domain) + size(image) Oslo E
London %:
Do we really need to [Athens &
store the name of 2 [Berlin |

city to know its
weather!?

S CU —).

Compressed Functions

New York |

® Trie to search on domain of F Rome 0

® |eaves of this trie store the weather in Madrid @
the corresponding city |

Helsinki .ﬁ

® Space:size(domain) + si

® Compressed representation of F so that, given a key X in O(1)

e we return F(X), if X belongs to S
Do we really need to

store the name of a
City to know its No need to store/access/remember the domain of F

® we return an arbitrary value, otherwise

weather?

Codomain is stored in compressed space (Entropy of values)

Occurrence Estimation

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

® T is not heeded and | uses

® Results are incorrect for (at most) a term +E

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

® T is not needed and | uses
® Results are incorrect for (at most) a term +E

® Our PODS provides an O(|P|) time space/error optimal
solution

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

® T is not needed and | uses
® Results are incorrect for (at most) a term +E

® Our PODS provides an O(|P|) time space/error optimal
solution

® ie,O(T|/E) bits

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

® T is not needed and | uses
® Results are incorrect for (at most) a term +E

® Our PODS provides an O(|P|) time space/error optimal
solution

® ie,O(T|/E) bits

® Application to Selectivity Estimation in DB for execution
planing optimizations

Occurrence Estimation

® A (large) text | is preprocessed and a (small) index
is built

® |is able to estimate the number of occurrences of any
given substring P in | without the need of T

® T is not needed and | uses
® Results are incorrect for (at most) a term +E

® Our PODS provides an O(|P|) time space/error optimal
solution

® ie,O(T|/E) bits

® Application to Selectivity Estimation in DB for execution
planing optimizations

ccurrence Estimation

32 32 64
Error Threshold Error Threshold
(a) dblp (b) dna

N

32
Error Threshold Error Threshold

(c) english (d) sources
e FM-index [J APPROX B CPST

ccurrence Estimation

a

60.\

N

40

20

32 16 32 64
Error Threshold Error Threshold

(a) delp 5 Mb, | 00x smaller than texéb) -

N

32 6‘4 ‘ 32
Error Threshold Error Threshold
(c) english (d) sources
e FM-index X PST [1 APPROX B CPST

ccurrence Estimation

32 32 64
Error Threshold Error Threshold
(a) dblp (b) dna

N

32
Error Threshold Error Threshold

(c) english (d) sources
e FM-index [J APPROX B CPST

Occurrence Estimation

60

40

20

0

Precision improvement in Selectivity Estimation:
5x -- 800x

X i

60l

50
A

40

30 \k

20

10

6‘4 ‘ 6I4
Error Threshold Error Threshold

(c) english (d) sources
e FM-index [1 APPROX B CPST

Thank You!

