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+ Space efficiency
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Maximize Compression and
Efficiently Access and Search




Compressor’s performance
optimization

a text T[1,n] and compressor

an optimal partition of | in blocks
such that compress size achieved by
compressing them individually with C is
better than that of the whole
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Result

® Optimal partition can be found with Dynamic
Programming in O(n?) time

® Not usable in practice for texts longer than few Mbs

® For any fixed parameter €>0, our algorithm computes an
-approximation of the optimal partition in
time and linear space

® The idea is exploiting a particular property of the cost
function to speed up Dynamic programming solution

® The property (monotonicity) is quite common. Thus, the idea can be
used in other contexts.
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a text T[I,n]

find the optimal LZ77 parsing of T
(i.e., the parsing that minimizes the
compress size)



Lempel-Ziv 77



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2)



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2) (0,b)



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,2) (0,b) (2,3)



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol
Il 2 b a b a aaababaaaaldhb

(0,a) (O,b) (2,3) (1,3)



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

(0,a) (O,b) (2,3) (1,3) (7,8)



Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

Encode distances and lengths with two uniquely

(0,a) (O,b) (2,3) (1,3) (7,8) decodable encoding functions

fgn]—{0,1}"




Lempel-Ziv 77

Many implementations: gzip, arj, .gif, jar, pkzip, compress, Izma, ...

Parse input text from left to right splitting it into
A phrase is either a single symbol or a repetition in the already parsed part.

always selects the longest repetition

Backward-References: or if single symbol

I 2 b a b a a a a b ab aaaab

Encode distances and lengths with two uniquely

(0,a) (O,b) (2,3) (1,3) (7,8) decodable encoding functions

fgn]—{0,1}"




Greedy strategy wastes space

T ...abacdde ... abae ....cdde ......... abacddf ...



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ....cdde ......... abacddf ...



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ....cdde ......... abacddf ...



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ....cdde ......... abacddf ...

2k



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ....cdde ......... abacddf ...

2k

= |f(2Y)| = log 2* = k bits



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ....cdde ......... abacddf ...

2k

= |f(2Y)| = log 2* = k bits



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

T ...abacdde ... abae ...cdde ......... abacddf ...

2k

= |f(2Y)| = log 2* = k bits



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
R —
T ...abacdde ... abae ...cdde ......... abacddf ...
2k

= |f(2Y)| = log 2* = k bits



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
R —
T ...abacdde ... abae ...cdde ......... abacddf ...
2k

= |f(2Y)| = log 2* = k bits
Cost < 2|f(2")| = 2log 2" = 2h bits



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde ......... abacddf ...

2k
= |f(2Y)| = log 2* = k bits
Cost < 2|f(2")| = 2log 2" = 2h bits
Non greedy strategy is better if h < k/2



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde ......... abacddf ...

2k

Non greedy strategy is better if h < k/2



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde ......... abacddf ...

2k

Non greedy strategy is better if h < k/2

good in practice!



Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

2h
I —
T ...abacdde ... abae ...cdde ......... abacddf ...
2k

Cc
Non greedy strategy is better if h < k/2

bits

File ||English|| HTML |Sources

gOOd in practice? Bwt |/206%117.3% || 3.8%
LZ-fix 1[26.1% 1[24.6% || 2.9%




Greedy strategy wastes space

Assume any value j is encoded by f() with log j bits

abacddf ...

Fast in decompression!

- 0.8 vs 20 secs x 50Mbs

bits
Non greedpPstrategy is better if h < k/2

File ||English|| HTML |Sources
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Our algorithm computes the optimal LZ77-parsing in
time and linear space

The idea is exploiting properties of the cost function to
speed up Dynamic programming solution

® The properties (monotonicity and sparsity) are quite common. Thus, the
idea can be used in other contexts.
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Optimal parsing can be found with Dynamic
Programming in O(n?) time

The idea is €% cost function to
speed Up il

® The propertig o are quite common. Thus, the
idea can bé usean
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Compressed Scheme with
optimal access

° a text T[I,n]

° design a compressed scheme able to
access any portion of T in optimal time
(i.e., w bits of information in O(1) time)

® Space is bounded in terms of k-th order entropy
of T ( Hi(T) + o(n log |2]) bits )



Simple scheme with interesting analysis

ob =1V IogO n
o # blocks = n/b = O(n / log n)

e #distinct blocks = O(c?) = O(n*)
\
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Simple scheme with interesting analysis

.b=1/zlogOn

e # blocks = n/b = O(n /

Building block for
many subsequent
compressed DSs

Aduanbalj
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The Prologue

The new millennium has seen the born of a new class of full-text indexes which are structurally similar to Suffix Trees and Suffix Arrays, in that
they support the powerful substring search operation, but are succinct in space, in that it is close to the empirical entropy of the indexed data.
They are therefore called compressed Suffix Trees and compressed Suffix Arrays, or in general compressed indexes.

In the literature we counted more than 20 papers authored by more than 20 different researchers. This interest is motivated by the large
availability of textual data in electronic form, by the ever increasing gap in performance among the memory levels of current PCs, and by the "non

negligible” space occupancy of classic data structures like Suffix Trees and Suffix Arrays which are pervading the Biolnformatics and the Text
Mining fields.

Don Knuth already observed, in its famous 3rd Volume on the Art of Computer Programming, that "space optimization is closely related to time

optimization in a disk memory”. So we believe that compressed indexes may become a crucial tool for the design of sophisticated and efficient

software solutions given the ubiquity of indexing data structures in them. We nevertheless note that the algorithmic technology underlying these

compressed indexes stays not at an undergraduate level. Consequently the implementation of any known compressed index requires much |
engineering effort, a strong algorithmic background, and still the final program may possibly not achieve its best performance!

This site has two mirrors: one in Italy and one in Chile. Hence you can argue the why of its name ;-) Its ultimate goal is to push towards the
technology transfer of this fascinating algorithmic technology lying at the crossing point of data compression and data structure design. In order
to achieve this goal the Pizza&Chili site offers publicly available implementations of compressed indexes. Each implementation follows a suitable
API of functions which should, in our intention, allow any programmer to plug the provided compressed indexes within their own software and

play with their functionalities and efficiency. The site also offers a collection of texts for experimenting and validating compressed indexes. In
detail it offers three kinds of material:

» A set of compressed indexes which are able to support the same search functionalities of Suffix Trees and Suffix Arrays (e.g., substring
searches), but requiring succinct space occupancy and offering, in addition, some text access operations that make them useful within
text retrieval and mining software systems.
» A set of text collections of various types and sizes to test experimentally the available compressed indexes, or the new compressed
indexes that researchers like to submit to this site. The text collections have been selected to form a representative sample of different
applications where indexed text searching might be useful. The sizes of these texts are large enough to stress the impact of data
compression over memory usage and CPU performance. The goal of experimenting with this testbed is to conclude whether, or not,
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The Index Collection

Up to now, the following compressed indexes have been implemented and made available in this site:

= Suffix Array

= Succinct Suffix Array

= Alphabet-Friendly FM-Index

= Compressed Compact Suffix Array
= Run Length FM index

= FM-Index

s LZ-index

= Compressed Suffix Array

= Repair Suffix Array

Send Mailto Us | © P. Ferragina and G. Navarro, Last update: September, 2005.
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We are particularly interested in self-indexes, namely compressed indexes that encapsulate sufficient information to reproduce any substring of
the indexed text, and thus possibly the text itself. If a compressed index is not a selfindex, then one must keep the text together with the index
and report the text size plus the index size.

To use a compressed index over a text, we first have to build it, and then we can either query it to count or locate the occurrences of the queried

pattern, or we can access some snippets of the indexed text for displaying the context of a pattern occurrence, or for retrieving some text
substrings (possibly the whole text).

Indexes are used through the following API interface, written in the C/C++ language. We actually use uchar for denoting unsigned char and
ulong for denoting unsigned long. The interface assumes that each text symbol is represented in one byte. The integer e returned by any
procedure indicates an error code, If different of zero. The error message can be accessed by calling the procedure char *error_index(e).
We further recall that text and pattern indexes start at zero. Below you find a schematic summary of the API interface offered by all the
compressed indexes available for downloading. Please read carefully the COPYRIGHT information that comes with each of them.

Building the index

Function Parameters Comment
uchar *text, Creates index from text[0.. length-1]. Note that the index is an opaque data type. Any build
int build index ulong length, option must be passed in string build_options, whose syntax depends on the index. The
- char*build_options, index must always work with some default parameters if build_options is NULL. The
void *index returned index is ready to be queried.
: . void *index, . . . . . . .
int save_index char *filename Saves index on disk by using single or multiple files, having proper extensions.
.

M
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The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
set of application areas where the problem of full-text indexing might be relevant, and for each of them selected texts freely available over the
web. Second, we aimed at maintaining the number of these texts reasonably small in order to avoid long experiments and unreadable tables of
results. In particular, we have only one text of each type. Finally, the size of the texts has been chosen large enough to make indexing relevant
and compression apparent. Note however that experimenting may be performed at different scales, depending on users' RAM, by using the tool
cut which allows one to limit the indexed text to any possible length (see below).

Follow the links of each type of text to reach a directory containing one gzipped file, <flename>.gz. Download and gunzip this file to get the
original text file, <flename>. The directory also contains other files, named <filename>.<X>MB.gz. These are prefixes of <filename> of <X>
megabytes. Of course, some of these files may not exist if <filename> is not long enough.

These are the current collections provided in the Pizza&Chili repository:

» SOURCES (source program code). This file is formed by C/Java source code obtained by concatenating all the .c, .h, .C and .java files of
the linux-2.6.11.6 and gcc-4.0.0 distributions. Downloaded on June 9, 2005.

» PITCHES (MIDI pitch values). This file is a sequence of pitch values (bytes in 0-127, plus a few extra special values) obtained from a
myriad of MIDI files freely available on Internet. The MIDI files were processed using semex 1.29 tool by Kjell Lemstrom, so as to convert
them to IRP format. This is a human-readable tuple format, where the 5th column is the pitch value. Then the pitch values were coded in
one byte each and concatenated. Downloaded during April 2005.

» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.

u [\ l'l‘l'. ‘ 2 | i~ Ol,‘l.lll IOI . - i~ = nm etextl! n etextl! L ll 1 AL

M



File Edit View History Bookmarks Tools Help S

@ @ @) m " () http://pizzachili.di.unipi.it/texts.html ¥ @ 500qle oQ)

A
a

Pizza&Chili COprS The Italian mirror The Chilean mirror
Compressed Indexes and their Testbeds

Homey mdexColectiony TextColection\ Apl\ Experimentalsamy The Initiative  Additional Material

The Text Collection

The choice of the types of texts to be indexed and experimented followed some basic considerations. First, we wished to cover a representative
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.
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The Text Collection
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.
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The Text Collection
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
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The Text Collection
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare

proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
2006.

= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
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» PROTEINS (protein sequences). This file is a sequence of newline-separated protein sequences (without descriptions, just the bare
proteins) obtained from the Swissprot database. Each of the 20 amino acids is coded as one uppercase letter. Updated on December 15,
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= DNA (gene DNA sequences). This file is a sequence of newline-separated gene DNA sequences (without descriptions, just the bare DNA
code) obtained from files 01hgp10 to 21hgp10, plus Oxhgp10 and Oyhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
uppercase letter A,G,C T, and there are a few occurrences of other special characters. Downloaded on June 9, 2005.
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Time lower bounds Space lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermbmate
+andem among a set of possible queries

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution to reduce time complexity
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Time lower bounds

What is the minimum time complexity of your
query (worst case)?

There exists superconstant time lower
bounds for many problem:s.

Obtained via sophisticate information
theoretic and probabilistic arguments.

- Choose a set of queries Q unifermath=at-
sandom,

- Prove all Q must require T(Q) time
- Design Distribution-aware (compressed) data
structures

DS knows the distribution of subsequent

queries, or self-adapts to unknown
distribution

Space lower bounds

What is the minimum numbers of bits you need!?

Obtained via combinatorial arguments.

Space is log of number of possible objects of
your type.

E.g., 2" binary texts of len n = log 2" = n bits.

No two objects can have the same
representation!

What if your (available) memory does not
suffice!?

- Buy more memory!

- Design data structures without data.
DS has to err! but error rate can be
guaranteed
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Compressed Functions

New York |

® Trie to search on domain of F Rome 0

® |eaves of this trie store the weather in Madrid @
the corresponding city |

Helsinki .ﬁ

® Space:size(domain) + si

® Compressed representation of F so that, given a key X in O(1)

e we return F(X), if X belongs to S
Do we really need to

store the name of a
City to know its No need to store/access/remember the domain of F

® we return an arbitrary value, otherwise

weather?

Codomain is stored in compressed space (Entropy of values)
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