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Fit as much as data as possible in 
the higher levels of memory hierarchy 
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Trie is the classical efficient solution. 
Each leaf corresponds to a query. 

A search for each symbol we digit 
=>

Trie must fit in RAM

153,645,450 
distinct queries 

in 6 weeks Altavista
query log

Tree + Edges labels + Text ≈12 Gbytes
(assuming queries of 5 symbols each)

Compressed Tree + Compressed text with fast decompression < 800 Mbytes
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Maximize Compression and
Efficiently Access and Search



Compressor’s performance 
optimization

• Input: a text T[1,n] and ANY compressor C

• Goal: an optimal partition of  T in blocks 
such that compress size achieved by 
compressing them individually with C is 
better than that of the whole T 

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011
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• Not usable in practice for texts longer than few Mbs

• For any fixed parameter ϵ>0, our algorithm computes an 
(1+ϵ)-approximation of the optimal partition in         
O(n log1+ϵ n) time and linear space

• The idea is exploiting a particular property of the cost 
function to speed up Dynamic programming solution

• The property (monotonicity) is quite common. Thus, the idea can be 
used in other contexts.

 with P. Ferragina, I. Nitto, ESA 2009 / Algorithmica 2011



• Input: a text T[1,n]

• Goal: find the optimal LZ77 parsing of  T 
(i.e., the parsing that minimizes the 
compress size)
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(0,a) (0,b) (2,3) (1,3) (7,8)

Many implementations: gzip, arj, .gif, jar, pkzip, compress, lzma, ...

Parse input text from left to right splitting it into phrases.
A phrase is either a single symbol or a repetition in the already parsed part.

Greedy strategy always selects the longest repetition

Backward-References: (distance, length) or (0,c) if single symbol

Decompression is simple and efficient in practice

Encode distances and lengths with two uniquely 
decodable encoding functions 

f,g:[n]→{0,1}*

Lempel-Ziv 77
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Greedy strategy wastes space
Assume any value j is encoded by f() with log j bits

T … abacdde ….......................... abae .... cdde ......... abacddf ...

good in practice?

2k

2h

Cost = |f(2k)| = log 2k = k bits

Cost < 2|f(2h)| = 2log 2h = 2h bits

Non greedy strategy is better if h < k/2

| LZ(T ) |
| OPT (T )

= ⌦(

log | T |
log log | T | )

Fast in decompression!
0.8 vs 20 secs x 50Mbs
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• Optimal parsing can be found with Dynamic 
Programming in O(n2) time

• Our algorithm computes the optimal LZ77-parsing in         
O(n log n) time and linear space

• The idea is exploiting properties of the cost function to 
speed up Dynamic programming solution

• The properties (monotonicity and sparsity) are quite common. Thus, the 
idea can be used in other contexts.

Lempel-Ziv 77
 with P. Ferragina, I. Nitto, SODA 2009

in practice?

BWT compression
&

LZ77 speed!



Compressed Scheme with 
optimal access

 with P. Ferragina, SODA 2007 / TCS 2007

• Input: a text T[1,n]

• Goal: design a compressed scheme able to 
access any portion of  T in optimal time 
(i.e., w bits of information in O(1) time)

• Space is bounded in terms of k-th order entropy 
of T ( Hk(T) + o(n log |Σ|) bits ) 



Simple scheme with interesting analysis

b
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 #distinct blocks = O(σb) = O(n½)
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Simple scheme with interesting analysis

b
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code
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00
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0
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Χ
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Y

 b = ½ logσ n 

 # blocks = n/b = O(n / logσ n)
 #distinct blocks = O(σb) = O(n½)

P 1 1 2 2 4 5 6 ...

Building block for 
many subsequent 
compressed DSs

 with P. Ferragina, SODA 2007 / TCS 2007
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Compressed Full-text Indexing
 with R. Gonzalez, P. Ferragina, G. Navarro, JEA 2008 

Suffix Array’s operations but in compressed space

Three Families: 
FM-index [Ferragina-Manzini, FOCS’00, JACM’05]
CSA [Grossi-Vitter,  STOC’00, Sadakane SODA’02]
LZ-index [Navarro SPIRE’02]

Studies at a theoretical stage. No experimental comparison.

Contribution: Algorithmic engineering and experimetal effort
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The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE
ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT
PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN µsecs/char AVERAGED OVER ONE MILLION OF SEARCHED
PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION !
[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.
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- Design Distribution-aware (compressed) data 
structures 
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with P. Ferragina, J. Siren, ESA 2011 

Distribution-Aware
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problem

F : S ✓ U ! ⌃

Do we really need to 
store the name of a 

city to know its 
weather?

• Trie to search on domain of F

• Leaves of this trie store the weather in 
the corresponding city

• Space: size(domain) + size(image)

• Compressed representation of F so that, given a key X in O(1)

• we return F(X), if X belongs to S

• we return an arbitrary value, otherwise

• No need to store/access/remember the domain of F

• Codomain is stored in compressed space (Entropy of values)
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Figure 7: Statistics on the datasets. The second column denotes the original text in MBytes. Each subsequent group of three
columns describe PST l information for a choice of ⌃: expected amount of nodes, |T |/l ; real amount of nodes in PST l(T );
sum of length of labels in PST l(T ). All numbers are expressed in thousands.
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Figure 8: Space occupancies of indexes as a function of the error threshold l .

CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the
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CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the
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CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the
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CPST and APPROX are in general significantly smaller than
FM-index and remain competitive even for small value of l .
As an example, FM-index requires 232.5 Mbytes on english
which is roughly 45 times larger than CPST�256.

As far as PST is concerned, it is always much worse than
CPST and APPROX. As expected, its space ine⇤ciencies are
due to the need of storing edge labels since their amount
grows rapidly as l decreases (see Figure ??). Moreover, this
quantity strictly depends on the indexed text while the num-
ber of nodes is more stable. Thus, the performances of PST
are erratic: worse than CPST by a factor 6 on english that
becomes 60 on sources. It is remarkable that on sources
we have to increase PST’s error threshold up to 11, 000 to
achieve a space occupancy close to our CPST with l = 8 .

For what concerns applications, we use our best index,
i.e. CPST together with one estimation algorithm: MOL. The
reader can find a lightweight explanation of the algorithm
in Section ??; the algorithm is oblivious of the underlying
data structure as long as a lower-sided error one is used. We

performed (details omitted) a comparison between MO, MOL
and KVI [?, ?] and found out that MOL delivered the best
estimates. We also considered MOC and MOLC, but for some
of our data sets the creation of the constraint network was
prohibitive in term of running memory. Finally, we tried to
compare with CRT [?]; however, we lacked the original imple-
mentation and a significative training set for our data sets.
Hence, we discarded the algorithm from our comparison.
Figure ?? shows the average error of the estimates ob-

tained with MOL on our collection by using either CPST or
PST as base data structure. For each text, we searched 4
Millions patterns of di�erent lengths that we randomly ex-
tracted from the text. For each set we identified two pairs
of thresholds such that our CPST and PST have roughly the
same space occupancy. Thus, this table gives the idea of the
significant boost in accuracy that one can achieve by replac-
ing PST with our solution. As an example, consider the case
of sources where the threshold of PST is considerably high
due to its uncontrollable space occupancy. In this case the
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