
Proceedings of the 13th Italian Conference on

Theoretical Computer Science

ICTCS 2012

Villa Toeplitz
Varese, Italy

September 19-21, 2012

Proceedings of ICTCS 2012, 13th Italian Conference on Theoretical Computer
Science

Varese, Italy
September 19-21, 2012

ii

Foreword

The 13th Italian Conference on Theoretical Computer Science (ITCTS 2012)
was held at University of Insubria in Varese, Italy. It was a three-day conference
starting September 19th and ending September 21st, 2012. The conference of
the Italian Chapter of the European Association for Theoretical Computer Sci-
ence, besides being a forum of exchange of ideas, provides the ideal environment
where junior researchers and PhD students meet senior researchers.

The papers presented at ICTCS 2012 were, not only from many italian
universities, but also from 8 countries including Finland, France, Germany,
Moldovia, Netherlands, Portugal, Romania, and Serbia. There were three in-
vited talks given at the conference. They were given by (in alphabetic order)
Paolo Ferragina (Pisa), Ugo Montanari (Pisa), and Antonio Restivo (Palermo).

This volume includes all the 36 contributed papers, and the papers or ab-
stracts from the 3 invited speakers. We warmly thank all the invited speakers
and all the authors of the submitted papers. Their efforts were the basis of the
success of the conference. We would like to thank all the members of the Pro-
gram Committee and the external referees. Their work in evaluating the papers
and their comments during the discussions were essential. Special thanks to
Paola Spoletini and to Violetta Lonati for their invaluable help in typesetting
the Proceedings and in designing the ICTCS 2012 web site.

Paolo Massazza

iii

Organization

Conference Chair:

Paolo Massazza, University of Insubria, Varese

Program Committee:

• Alberto Bertoni, University of Milano, Milano

• Tiziana Calamoneri, University of Roma ”La Sapienza”, Roma

• Mario Coppo, University of Torino, Torino

• Clelia De Felice, University of Salerno, Salerno

• Pierpaolo Degano, University of Pisa, Pisa

• Violetta Lonati, University of Milano, Milano

• Emanuela Marelli, University of Camerino, Camerino

• Paola Spoletini, University of Insubria, Varese

iv

Conference Program

Invited contributions

Roberto Bruni, Ugo Montanari, Gordon Plotkin, Daniele Terreni
On hierarchical graphs: reconciling bigraphs, gs-monoidal theories
and gs-graphs 1

Paolo Ferragina
Algorithms and data structures for massive data: whats next? 23

Antonio Restivo
On the expressive power of the shuffle product 24

Regular papers

Artiom Alhazov, Alberto Leporati, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron
Simulating EXPSPACE Turing machines using P systems
with active membranes 31

Bogdan Aman, Gabriel Ciobanu
Behavioural equivalences over mobile membranes with delays 35

Davide Ancona, Matteo Barbieri, Viviana Mascardi
Global types for dynamic checking of protocol conformance
of multi-agent systems 39

Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna,
Roberto Zunino
Circular causality in event structures 44

Davide Basile
Service interaction contracts as security policies 48

Marcello M. Bersani, Achille Frigeri
Checking satisfiability of CLTL without automata 52

Marcello M. Bersani, Achille Frigeri, Alessandra Cherubini
On the complexity of pure 2D context-free grammars 56

Stefano Bistarelli, Francesco Santini
A secure coordination of agents with nonmonotonic soft
concurrent constraint programming 60

v

Paola Bonizzoni, Anna Paola Carrieri, Riccardo Dondi,
Gabriella Trucco
The binary perfect phylogeny with persistent characters 64

Paola Bonizzoni, Riccardo Dondi, Giancarlo Mauri, Italo Zoppis
On the complexity of the swap common superstring problem 70

Giusi Castiglione, Marinella Sciortino
Moore automata and epichristoffel words 74

Renza Campagni, Donatella Merlini, Renzo Sprugnoli
Data mining for a student database 78

Nicoló Cesa-Bianchi, Claudio Gentile, Fabio Vitale,
Giovanni Zappellai
A fast active learning algorithm for link classification 82

Gabriel Ciobanu, Angelo Troina
Rate-based stochastic fusion calculus and continuous time
Markov chains 86

Carlo Comin, Maria Paola Bianchi
Algebraic characterization of the class of languages recognized
by measure only quantum automata 90

Gianlorenzo DAngelo, Mattia DEmidio, Daniele Frigioni,
Daniele Romano
Efficient algorithms for distributed shortest paths
on power-law networks 94

Erika De Benedetti, Simona Ronchi Della Rocca
A complete polynomial λ-calculus 98

Giorgio Delzanno, Riccardo Traverso
A formal model of asynchronous broadcast communication 102

Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
Fabrizio Montecchiani
h-quasi planar drawings of bounded treewidth graphs in linear area 106

Christoph Dittmann, Stephan Kreutzer, Alexandru I. Tomescu
Graph operations on parity games and polynomial-time algorithms 110

Gabriele Fici
A characterization of bispecial Sturmian words 114

Gabriele Fici, Zsuzsanna Lipták
Words with the smallest number of closed factors 118

Nicholas Fiorentini, Achille Frigeri, Liliana Pasquale, Paola Spoletini
Time modalities over many-valued logics 123

Letterio Galletta
A reconstruction of a type-and-effect analysis
by abstract interpretation 127

Paola Giannini, Daniele Mantovani, Albert Shaqiri
Leveraging dynamic typing through static typing 131

vi

Elena Giachino, Tudor A. Lascu
Lock analysis for an asynchronous object calculus 137

Svetlana Jakšić
Input/output types for dynamic web data 143

Giovanna J. Lavado, Giovanni Pighizzini, Shinnosuke Seki
Converting nondeterministic automata and context-free grammars
into Parikh equivalent deterministic automata 147

Marina Lenisa, Daniel Pellarini
Hoare logic for multiprocessing (work in progress) 151

Jianyi Lin
Size constrained clustering problems in fixed dimension 155

Violetta Lonati, Dino Mandrioli, Matteo Pradella
Automata and logic for Floyd languages 159

Davide Maglia, Nicoletta Sabadini, Filippo Schiavio,
Robert F.C. Walters
The algebra and geometry of networks 163

Andreas Malcher, Katja Meckel, Carlo Mereghetti, Beatrice Palano
On pushdown store languages 168

Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci
Undecidability of quantized state feedback control
for discrete time linear hybrid systems 172

Emanuele Milani, Nicola Zago
Exploiting fine grained parallelism on the SPE 176

Emanuele Rodaro, Öznur Yeldan
A continuous cellular automata approach to highway traffic modeling 187

vii

On hierarchical graphs: reconciling bigraphs,
gs-monoidal theories and gs-graphs?

Roberto Bruni1, Ugo Montanari1, Gordon Plotkin2, and Daniele Terreni1

1 Computer Science Department, University of Pisa, Italy
2 LFCS, School of Informatics, University of Edinburgh, UK

Abstract. Compositional graph models for global computing systems
must account for two relevant dimensions, namely nesting and linking.
In Milner’s bigraphs the two dimensions are made explicit and repre-
sented as loosely coupled structures: the place graph and the link graph.
Here, bigraphs are compared with an earlier model, gs-graphs, based on
gs-monoidal theories and originally conceived for modelling the syntac-
tical structure of agents with α-convertible declarations. We show that
gs-graphs are quite convenient also for the new purpose, since the two
dimensions can be recovered by introducing two types of nodes. With
respect to bigraphs, gs-graphs can be proved essentially equivalent, with
minor differences at the interface level. We argue that gs-graphs have
a simpler and more standard algebraic structure for representing both
states and transitions, and can be equipped with a simple type system (in
the style of relational separation logic) to check the well-formedness of
bounded gs-graphs. Another advantage concerns a textual form in terms
of sets of assignments, which can make implementation easier in rewrit-
ing frameworks like Maude. Vice versa, the reactive system approach
developed for bigraphs needs yet to be addressed in gs-graphs.

1 Introduction

When modelling distributed systems, it is necessary to represent states and their
evolutions. Usually, states are seen as terms of an algebra equipped with cer-
tain structural axioms, and state transitions are defined via conditional term
rewriting rules in the SOS format. A different alternative is to represent states
as graphs and transitions as graph transformations. To have the best of the two
approaches, it is sometimes possible to characterise the terms up to structural
axioms as graphs and the transitions derivable via the SOS inference rules as
graph transformations. A good example is provided by arrows of gs-monoidal
theories, which can be seen as gs-graphs, and transitions, represented as 2/dou-
ble cells of a 2/double category, which can be seen as gs-graph transformations.
The approach has been applied to π-calculus [9], to CCS with localities [9] and
causality [2], to logic programming [3] and to other models of computation.

? Research supported by the EU Integrated Project 257414 ASCENS and by the
Italian MIUR Project IPODS (PRIN 2008).

1

Gs-monoidal theories [6, 2] are suitable symmetric strict monoidal cate-
gories [14] that resemble cartesian (Lawvere) theories, but without the two natu-
rality axioms that allow copying shared subterms and garbage collecting unused
terms. In addition, gs-monoidal theories are built out of symbols taken from a
hyper-signature instead of an ordinary signature. The difference is that symbols
in a hyper-signature are not constrained to have single-sorted codomain, but,
like domains, can be a tuple of sorts. The corresponding gs-graphs are a kind of
dags where substructures can be shared due to both ordinary duplicators, as in
term graphs, and hyper-signature symbols (see e.g. Fig. 2(a)). A useful feature
of gs-graphs is that they can be represented in textual form as sets of assign-
ments of the form x, y := f(z, v), where f is a signature symbol that takes two
arguments and returns a pair of results and x, y, z, v are α-convertible names.
Here 2-cells are essentially like term rewriting rules which can be both contextu-
alised and instantiated. Double cells allow one to model synchronisation of local
rewritings.

Recent developments in the area of open-ended systems for global computing
have emphasised the need for hierarchical graph models: they have two relevant
dimensions, namely nesting and linking. The former has to do with the struc-
tural design of processes (e.g., the scoping of a transaction, a compensation, or a
session, or the containment of an ambient, a membrane, or an environment); it
induces a tree-like hierarchy on nodes. The latter concerns interaction capabil-
ities (e.g., for communication, handshaking, or connectivity) that are flat, and
may connect any tree nodes. This is the pure case. The situation is more complex
in the binding case, where a name used for communication is declared at some
level in the tree hierarchy and is usable only below its declaration point. Inspired
by Cardelli and Gordon’s ambients [4] and aiming at defining a general, flexible
and easy to grasp model, Milner defined bigraphs, where the two dimensions are
made explicit and represented as essentially orthogonal structures, called place
graph and link graph. Bigraphs [19, 18, 13, 16] have been studied in depth from
several points of view, in particular as a basis of the reactive system approach,
where a labelled transition system, over which bisimilarity is a congruence, is
synthesised from a reduction semantics. This part of the theory is not covered
for gs-graphs.

Gs-graphs were originally conceived with the syntactical structure of agents
with α-convertible declarations in mind, not the hierarchical structure of global
computing systems. However it turns out that they are also quite convenient for
this new purpose. The nesting and linking structure can be recovered by defining
two types of nodes, black nodes, which represent intermediate places in the tree-
like hierarchy, and white nodes which are communication names/channels.

In this paper, gs-graphs are compared with support equivalent bigraphs. Our
first correspondence result states that the two models essentially coincide in the
pure case. The only difference is in the interface: gs-graphs have an ordered tuple
of connectors and all the names are α-convertible, while bigraph connectors are
decorated with names. The “names versus strings in a free monoid” dichotomy
can already be found in the simple case of equational theories versus Lawvere

2

theories, where one has to translate between variables and numbers. On the
one hand, named connectors facilitate the direct representation in bigraphs of
standard process calculi operations; on the other hand, they make the algebraic
structure of bigraphs more complex and less standard: e.g. parallel composition
is partial and sequential composition is associative only up to isomorphism. Also
the rewriting structure does not generate composable cells. On the contrary, gs-
graphs inherit from gs-monoidal theories a variety of well-behaved operations.

Our second correspondence result is concerned with (support equivalent)
binding bigraphs. In the binding case, it is necessary to constrain the composi-
tional structure to generate only legal graphs. For bigraphs [8], additional infor-
mation is inserted in the interface to allow for a complete axiomatisation. In our
approach, we introduce a type system which recognises legal binding gs-graphs.
On gs-monoidal theories the type system is represented by membership sentences
in membership equational logic [15], while on gs-graphs we exploit a quite simple
relational type system (in the style of relational separation logic [21]). When the
gs-graph is pure, no pairs are generated; parallel composition does not add any
pair; and for sequential composition existing pairs are preserved, but new pairs,
possibly leading to inconsistency, are generated. The complexity of the proposed
typing algorithm is O(B ·W), where B is the number of black nodes and W is
the number of bound white nodes.

The formal assessment of the analogies and differences between the two differ-
ent proposals and the definition of transformations to move from one framework
to the other allows us to conclude that: (i) bigraphs can be presented at a suitable
level of abstraction as arrows of a particular free symmetric monoidal theories,
in a perfectly standard way; and (ii) the gs-graphs representation seems to offer
some advantages over the others.

Structure of the paper. Section 2 recaps the basics of the models we are com-
paring. Section 3 addresses the case of pure signatures, while the binding case
is discussed in Section 4. Finally, Section 5 contains come concluding remarks.

Additional material is concerned with the formal definition of sequential and
parallel compositions of gs-graphs (Appendix A) and of bigraphs (Appendix B),
their preservation via the transformations presented in the paper (Appendix C)
and the technical details of the transformation from binding bigraphs to gs-
graphs (Appendix D).

2 Background on graph-based structures

Notation. For an ordinal n, we write i ∈ n as a shorthand for i ∈ {0, . . . , n−1}
and let [n,m] denote the set {i | n ≤ i ≤ m}. We use the symbol] for disjoint
union of sets. We let S∗ denote the free monoid over the elements in S, whose
product is juxtaposition and whose unit is denoted by ε. We abbreviate the
juxtaposition of n consecutive objects u by un, with u0 = ε. We overload | � | to
denote the length of a string, the cardinality of a set and the support of place /
link / bigraphs (see Definitions 6–8).

3

(ops)
f ∈ Σu,v

f : u→ v
(ids)

u ∈ S∗
idu : u→ u

(bang)
u ∈ S∗

!u : u→ ε
(dup)

u ∈ S∗
∇u : u→ uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u→ v t′ : v → w

t; t′ : u→ w
(par)

t : u→ v t′ : u′ → v′

t⊗ t′ : uu′ → vv′

Fig. 1. Inference rules of gs-monoidal theories

2.1 From signatures to gs-graphs

The gs-monoidal approach is based on representing basic computational entities
and resources as hyperedges and interaction capabilities by the way in which their
tentacles are connected to nodes. (The name gs comes after graph structure.) For
example, nodes can model communication channels and tentacles can express the
capability to perform i/o operations on them.

The idea is to consider a particular class of graphs obtained by selecting a few
basic shapes for hyper-edges (i.e. fix a hyper-signature) and by freely composing
them in series and in parallel to build larger and more complex shapes. Moreover,
it is allowed: 1) to rearrange the wirings of tentacles to connect in series edges
that otherwise are not “adjacent”; 2) to mark nodes as private to a certain
subgraph so that no other tentacle can be attached to them; 3) to attach more
than two tentacles to the same node. As only acyclic structures are allowed,
hyperedges can be stratified along the implicit partial order defined by tentacle
connections.

Definition 1 (hyper-signature). Given a set S of sorts, a hyper-signature
(signature, for short) Σ is a family {Σu,v}u,v∈S∗ of sets of operators such that
each f ∈ Σu,v takes |u| arguments typed according to u and returns a tuple of
|v| values typed according to v.

The expressions of interest are generated by the rules depicted in Fig. 1.
By rule (ops), the basic expressions include one generator for each operator of
the signature. All other basic terms define the wires that can be used to build
our graphs: the identities (ids), the dischargers (bang), the duplicators (dup)
and the symmetries (sym). These are the elementary bricks of our expressions,
and we get the remaining ones by closing them with respect to sequential (seq)
and parallel (par) composition. Every expression t : u → v generated by the
inference rules is typed by a source and by a target sequence of sorts (u and v,
respectively), which are relevant only for the sequential composition, which is a
partial operation. A wiring is an arrow of GS(Σ) which is obtained from the
rules of Fig. 1 without using rule (ops).

Definition 2 (gs-monoidal theory). Given a signature Σ over a set of sorts
S, the gs-monoidal theory GS(Σ) is the (symmetric, strict monoidal) category
whose objects are the elements of S∗ and whose arrows are equivalence classes of
gs-monoidal terms, i.e., terms generated by the inference rules in Fig. 1 subject
to the following conditions

4

– identities and sequential composition satisfy the axioms of categories
[identity] idu ; t = t = t ; idv for all t : u→ v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,

– ⊗ is a monoidal functor with unit idε, i.e., it satisfies
[monoid] t⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2)⊗ t3
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1)⊗ (t2 ; t′2) whenever both sides are defined,

– ρ is a symmetric monoidal natural transformation, i.e., it satisfies
[naturality] (t⊗ t′) ; ρv,v′ = ρu,u′ ; (t′ ⊗ t) for all t : u→ v, t′ : u′ → v′

[symmetry]
(idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρuv,w ρε,u = ρu,ε = idu ρu,v ; ρv,u = iduv

– ∇ and ! satisfy the following axioms
[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v
[unit and duplication] !ε = ∇ε = idε ∇u ; ρu,u = ∇u
∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu

Remark 1. We let ⊗ take precedence over ;. We shall focus on two-sorted sig-
natures over S = {•, ◦}, where • nodes are used for locations, while ◦ nodes
for links. Furthermore, for ease of modelling bigraphs, we reverse the sense of
direction for composing arrows, i.e. we take cogs-monoidal theories. As a matter
of notation we swap implicitly the source and target of each arrow, e.g. letting

ρ•,◦ : ◦• → • ◦ ∇• : •2 → • !◦ : ε→ ◦.

Moreover, we assume all signatures include the operator ν : ◦ → ε. Note that
the expression !◦ ; ν : ε → ε denotes a special arrow that is the counterpart of
so-called idle edges in bigraphs jargon. While the axiom !◦ ; ν = idε can be useful
in many situations, we decide not to impose it here, because it is not standard
for gs-monoidal theories. This point is further discussed in Section 5.

Example 1. Let us consider a (cogs) signature with three operators f, h : • → •◦
and g : • → •◦2. Then we can compose, e.g., the expressions below:

e1 , f ⊗ id◦ ; id• ⊗∇◦ : •◦ → •◦
e2 , (!• ; h)⊗ (!• ; h) ; id• ⊗ ρ•,◦ ⊗ id◦ ; ∇• ⊗∇◦ : ε→ •◦
e3 , g ⊗ id◦ ; ρ◦,• ⊗ ρ◦,◦ : •◦ → ◦ • ◦2
e4 , e1 ⊗ (e2 ; e3) ; id• ⊗ (∇◦ ; ν)⊗ id•◦◦ : •◦ → •2◦2

We note that a cogs-monoidal theory is a sm Lawvere theory [11] in which
every sort is a commutative monoid.

The algebraic structure of gs-monoidal theories finds suitable realisation in
graph-based modelling: arrows can be interpreted as concrete acyclic directed
hypergraphs with interfaces, taken up to renaming of their nodes; all such graphs
are represented by some arrow; any two isomorphic graphs whose interfaces
match are represented by the same arrow and are thus equivalent abstract graphs.

We find it convenient to represent concrete gs-graphs as sets of assignments.
We assume V is a denumerable set of S-sorted names, equipped with a total

5

order ≤ and such that there are infinitely many names for each sort. Names are
denoted by n1 : s1, n2 : s2, . . . or simply by n1, n2, . . . when the sort is clear from
the context. A name substitution is a sort-preserving morphism σ : V → V .

Remark 2. When the sort S = {•, ◦} is considered, we use p, q, ... for names of
sort • and x, y, z, ... for names of sort ◦. When needed, we assume the order ≤
is induced by subscripts, i.e., that ni ≤ n′j iff i ≤ j.

Definition 3 (assignment, multi-assignment). Let n′i : s′i for i ∈ [1, k], nj :
sj for j ∈ [1, h], u = s′1 . . . s

′
k and v = s1 . . . sh. A proper assignment is written

n′1 . . . n
′
k := f(n1, . . . , nh) where f ∈ Σu,v, When f ∈ Σu,ε the assignment is

written as n′1, . . . , n
′
k := f , while when f ∈ Σε,v it is written f(n1, . . . , nh). An

auxiliary assignment is written either n := n′ (aliasing), with n and n′ having
the same sort, or !(n) (name disposal). A multi-assignment G is a multiset of
(proper and auxiliary) assignments.

When a name appears in the left member of an assignment we say that it
is assigned, when it appears in the right member we say that it is used. For an
auxiliary assignment n := n′ we say n is an inner connection of the interface.
The set of outer connections of a multi-assignment consists of all names that are
used but not assigned. We denote with ic(G) (resp. oc(G)) the list of the inner
(resp. outer) connections of a multi-assignment G (ordered according to ≤). We
say that n <G n′ if G contains an assignment where n is used and n′ is assigned.

Proper assignments define the hyperedges of the graphs, whose tentacles are
attached to nodes named according to their assigned and used names. Node shar-
ing is realised by using the same name more than once. Auxiliary assignments
allow to expose more references to the same node in the interface or to prevent
certain nodes from appearing in the interface.

Definition 4 (gs-graph). A concrete gs-graph is a multi-assignment G s.t.:
(1) every name is assigned at most once; (2) the transitive closure <+

G of <G is
irreflexive; (3) every n ∈ ic(G) is a maximal element of <+

G; (4) for each name
n 6∈ ic(G) (exactly) one assignment !(n) is present. Two concrete gs-graphs G
and H are isomorphic if H can be obtained from G by applying an injective name
substitution that respects the total ordering ≤ of the inner and outer connections.
An abstract gs-graph (or simply gs-graph) is the equivalence class of a concrete
gs-graph modulo isomorphism.

Since gs-graphs are taken up to isomorphism, the exact choice of names is
immaterial. The constraints on gs-graphs allow us to introduce more concise
representation of gs-graphs by: (i) an auxiliary assignment of the form !(n) is
omitted whenever n is used in some other assignment; (ii) an auxiliary assign-
ment n := n′ is omitted if n′ is not an outer connection and it is a maximal
element, except for n, of the partial order v+;

It can be shown that the gs-graphs defined over a signature Σ form a (sym-
metric monoidal) category that is (naturally) isomorphic to the gs-monoidal
theory of Σ (see [9]). The idea is that a gs-graph G whose lists of sorts of inner

6

f g

h h

ν

p1 p2 x3 x4

x5

p6

p7

p8 p9

x10

mercoledì 1 agosto 2012 (a) A gs-graph

z

0

x

y

f
0

h h
g

1

(b) A pure bigraph

Fig. 2. Different graphical models for the same structure

connections, ic(G), and outer connection, oc(G) are u and v, respectively, can be
regarded as an arrow G : u→ v. Then we can fix atomic gs-graphs for the basic
building blocks of gs-monoidal theories and define how to compose gs-graphs in
sequence G1;G2 and in parallel G1 ⊗G2 (see Appendix A).

Example 2. The arrow e4 from Example 1 corresponds to the gs-graph G =
{ x5 := ν , p6 := f(p1, x5) , p7 := g(p2, x5, x4) , p8 := h(p7, x3) , p9 :=
h(p7, x3) , x10 := x5 , !(p8) , !(p9) }.

2.2 From signatures to bigraphs

The separation between different concerns is made more explicit in bigraphs,
which are composed by two graphs, the place graph and the link graph, defined
on the same set of nodes. In the literature two main classes of bigraphs have
been developed: the pure bigraphs [12] and the binding bigraphs [17].

In pure bigraphs a node is not allowed to declare a local name, and the nodes
communicate using only their global ports.

Definition 5 (pure signature). A pure signature consists of a set K whose
elements, called controls, specify the role of system nodes and a function ar :
K → N that assigns an arity to each control, i.e. the number of its ports.

A place graph is essentially a forest of unordered trees, and represents the
locality of the nodes, that is where they are placed in the hierarchy.

Definition 6 (place graph). Let K be a pure signature and m,n be a pair of
ordinals, then a place graph P : m→ n is a triple (VP , ctrlP , prntP) where VP is
a finite set of nodes called the support of P (also denoted |P |), ctrlP : VP → K
is the control map assigning a control to each node and prntP : m]VP → VP]n
is the parent map that describes the location of the nodes. The parent map is
acyclic in the sense that for each v ∈ V prntk(v) = v implies k = 0.

7

A link graph is a graph expressing the connectivity : an edge represent e.g. a
communication medium between attached nodes.

Definition 7 (link graph). Given a pure signature K a link graph L =
(VL, EL, ctrlL, linkL) : X → Y , where X and Y are the sets respectively of
inner and outer names, has finite sets of nodes VL and edges EL, a con-
trol map ctrlL : VL → K and a link map link : X] PL → EL] Y with
PL ,

∑
v∈VL

ar(ctrl(v)) the set of ports of L. The support of L is |L| , VL]EL.

The key point of bigraphs is that their place and link graphs are constructed
separately; therefore the locality of a node and its connectivity can not interfere.

Definition 8 (concrete pure bigraph). A concrete (pure) bigraph G =
(VG, EG, ctrlG, prntG, linkG) : 〈m,X〉 → 〈n, Y 〉 consists of a place graph
GP = (VG, ctrlG, prntG) : m→ n and a link graph GL = (VG, EG, ctrlG, linkG) :
X → Y . It is lean if it has no idle edges. We sometimes write G = 〈GP , GL〉
and the support of G is |G| , VG] EG.

Example 3. An example of pure bigraph is in Fig. 2(b). The place graph is
represented through the nesting of nodes, while the arcs pertain to the link
graph. The interface is given by pairing the interfaces of the place graph and
of the link graph. The outer interface of a place graph specifies the number
of distinct components forming the bigraph; to each component corresponds a
root displayed with an enclosing dashed box. In the example we have two roots
(numbered 0 and 1). The inner interface consists of the holes of the place graph,
called sites, that serve to compose with other place graphs. Our example has one
hole (numbered 0), displayed with a grey box. For the link graph, outer names
are displayed on the top (y and z), and inner names on the bottom (x).

Definition 9 (support equivalence for bigraphs). Given two bigraphs
G,H : 〈m,X〉 → 〈n, Y 〉, a support equivalence ρ : |G| → |H| is a pair of bi-
jections ρV : VG → VH and ρE : EG → EH such that: ctrlH ◦ ρV = ctrlG,
prntH ◦ (Idm] ρV) = (Idn] ρV) ◦ prntG and linkH ◦ (IdX] ρP) = (IdY] ρE) ◦
linkG, where ρP : PG → PH maps the ports of G in those of H and it is defined
in terms of ρV : for each port (v, i) ∈ PG, ρP ((v, i)) = (ρV (v), i).

We write G l H when G and H are support equivalent, and G m H if
they are support equivalent ignoring their idle edges (lean-support equivalence).
The lean-support quotient yields the (partial) symmetric monoidal category of
abstract bigraphs, denoted by BG(K), and the lean-support quotient functor [�]
maps each concrete bigraph in its corresponding abstract bigraph.

Definition 10 (abstract bigraphs). An abstract bigraph over K is a m-
equivalence class [G] : 〈m,X〉 → 〈n, Y 〉 of a concrete bigraph G.

In binding bigraphs, besides the possibility of having local names, there is
added a scope discipline for limiting the visibility of such local names. In partic-
ular a control may declare some names that only its descendants can use, thus
relaxing in part the assumption of independence of the two graphical structures.

8

x

0

0

1

Fig. 3. A binding bigraph

Definition 11 (binding signature). A binding signature has a set of controls
K and an arity function ar : K → N×N. If ar(K) = (h, k), we write K : h→ k
and we call, respectively, h and k the binding arity and the free arity of K and
they index respectively the binding ports and the free ports of K.

Definition 12 (binding interface). A binding interface is a triple I =
〈m, loc,X〉 where the ordinal m and the set of names X are as in pure bigraphs,
and loc ⊆ m ×X is the locality of the interface. If (i, x) ∈ loc we say that i is
a place of x. We denote by Iu = 〈m,X〉 the pure interface underlying I.

Example 4. The approach of the binding bigraphs for avoiding misleading com-
positions consists in enriching the interfaces with a locality relation loc that
establishes to which places, if any, a name belongs to. Fig. 3 denotes a simple
binding bigraph with a single control with a local name and two sites in it; the
locality relation on the inner interface associates the name to the first site. This
restriction prevents controls in the second site from using this name.

Definition 13 (locality relation). Let I = 〈m, locI , X〉 and J = 〈n, locJ , Y 〉
be binding interfaces and consider a pure bigraph Gu : Iu → Ju on the pure
underlying interfaces. Then the locality relation locG ⊆ (m] n] V)× (X] Y]
P] E), is the smallest relation such that:

– if (i, x) ∈ locI then (i, x) ∈ locG (locI ⊆ locG)
– if (j, x) ∈ locJ then (j, x) ∈ locG (locJ ⊆ locG)
– if p is a binding port of a node v then (v, p) ∈ locG
– if p is a free port of a node v then (prnt(v), p) ∈ locG
– if an edge e contains a binding port of v then (v, e) ∈ locG

Definition 14 (binding bigraph). Given two binding interfaces I and J a
concrete binding bigraph G : I → J consists of an underlying pure bigraph
Gu : Iu → Ju such that: (a) any edge has at most one binding port, while an
outer name has none; (b) if linkG(q) = l is a local link then q is also local, and
whenever (w, q) ∈ locG then there exists w′ such that prntkG(w) = w′ for some
k ∈ N and (w′, l) ∈ locG. The condition (b) is called the scoping rule.

3 Characterising Pure Bigraphs

This section shows that pure bigraphs are essentially equivalent to a particular
class of gs-graphs over the sorts {•, ◦}. The word “essentially” means that there

9

is a one-to-one relation between the objects of the two models, but only up to
certain bijections over the interfaces. Indeed the main difference lies in the way
through which the two models view the interfaces: for a bigraph an interface is
a pair composed by an ordinal and by a set of names, in a gs-graph instead the
interfaces are strings over the alphabet {•, ◦}. For making them comparable we
need to equip each model with some missing information which is present in the
other model. In a bigraphical interface 〈m,X〉 we must form a list out of the
elements in {0, . . . ,m − 1} and the elements in X. For the gs-graphs instead,
given a string in {•, ◦}∗ we have to assign a name to each element of sort ◦.

The relation between pure bigraphs and gs-graphs can be sketched by looking
at Fig. 2. Places correspond to hyperedges and their hierarchy is built in the
gs-graph by exploiting the nodes of sort •. Connectivity is represented by the
sharing of nodes of sort ◦. Closed links are the ◦ nodes below a restriction ν.
The dashed lines express which nodes are exported to the interfaces.

Interfaces. Given a bigraphical interface 〈m,X〉, every i ∈ m is of sort • while
the names in X are of sort ◦. Nevertheless if we had a gs-graph interface with
exactly m elements of sort • and |X| elements of sort ◦ we would not have an
obvious way to map such interface in 〈m,X〉, because the ◦ elements are ordered
unlike the names in X. Indeed, take for example the interfaces of our running
example u = •2◦2 and 〈2, {y, z}〉; there are two possible bijections from ◦2 to
{y, z} but only one allows to establish a correct correspondence (y must match
the first ◦ and z the second ◦). On the contrary, if we knew that y < z, the
natural way would be that of choosing the right bijection. Thus we introduce a
total order on the names used in the bigraphical interfaces.

Definition 15. Let X be a denumerable infinite totally ordered (by ≤) set of
names. Given a pure signature K, we take bigraphs in which the sets of names
on the interfaces are replaced by lists of names ordered through ≤. Given a list
L we denote by L[j] the (j + 1)th element of the list for each admissible j.

The assumption of having total ordered names makes the two type interfaces
more similar, but it is not sufficient for establishing a bijective relation between
them. Consider the previous example and suppose that in X we have y < x < z.
The interface I can be associated, through the unique monotone bijection, to the
bigraphical interface with the set {y, z}, but nothing prevents one using {x, z}
or {x, y} instead. These considerations lead us to the following definition that
embeds a particular set of names in a gs-graph interface.

Definition 16 (name choice). Let u ∈ {•, ◦}∗ and let #u be the number of
elements of sort ◦ in u. Then a name choice for u is an injective monotone map
σu : #u → X . A gs-graph G : u → v can be equipped with two name choices
σu, σv for the inner and the outer interfaces, written G : (u, σu)→ (v, σv).

Signatures. Both bigraphs and gs-graphs are based on a signature that describes
the allowed operators. Therefore it is necessary to correlate the two typologies
of signature. (In the rest of this section we understand that only pure signatures
are considered and we use the symbol K also for gs-graph signatures.)

10

Definition 17 (equating signatures). Consider a pure signature K; the
equivalent gs-graph signature Σ has an operator K : • → •◦h if and only if
the control K of arity h is in K.

Graphs. With the name choices, to a string over {•, ◦} corresponds exactly one
bigraphical interface, but the converse is false. Indeed a bigraphical interface
over ordered names can be viewed as a concatenation of two ordered lists, the
first with elements of sort • and the second with ◦-elements, while in a gs-
graph interface such elements are mixed. Thus given a bigraph we can add two
bijections that “shuffle” these elements as stated below:

Definition 18 (shuffled bigraphs). A shuffled bigraph 〈G : 〈m,X, φin〉 →
〈n, Y, φout〉 consists of a bigraph G : 〈m,X〉 → 〈n, Y 〉 and two bijections, φin :
m+ |X| → m+ |X| and φout : n+ |Y | → n+ |Y |, called shuffle functions, that
preserve the relative order of the elements with the same sort, i.e.:

– ∀i, j ∈ m+|X| if 0 ≤ i ≤ j < m or m ≤ i ≤ j < m+|X| then φin(i) ≤ φin(j)
– ∀i, j ∈ n+ |Y | if 0 ≤ i ≤ j < n or n ≤ i ≤ j < n+ |Y | then φout(i) ≤ φout(j).

From shuffled bigraphs to gs-graphs. The first transformation that we define takes
a shuffled bigraph G = 〈VG, EG, ctrlG, prntG, linkG〉 : 〈m,X, φin〉 → 〈l, Y, φout〉
and returns a gs-graph H = S[[G]] that represents it. The underlying idea is
relatively simple: there is a proper assignment for each node and edge of the
bigraph. In detail the edges cause the creation of assignments with the ν operator,
while the nodes give assignments that describe the position of a control in the
system and the interactions with the other controls, deriving it from the parent
and the link map of the bigraph. In the following we denote withNH the set of all
names appearing inH, which is partitioned inN •H andN ◦H , respectively the set of
all names of sort • and of sort ◦, appearing in H. Let N •H = VG]{s0, . . . , sm−1}]
{r0, . . . , rl−1} and N ◦H = EG] {x0, . . . , x|X|−1}] {y0, . . . , y|Y |−1}. Note that
xi and yj are not the names in sets X and Y , but new names used only in
the gs-graph. First we need two auxiliary functions prnt : m] V → N •H and
link : PG] X → N ◦H that translate the results of prntG and linkG into the
names of the gs-graph:

prnt(v) ,
{
w if prntG(v) = w ∈ VG
ri if prntG(v) = i ∈ l link(p) ,

{
e if linkG(p) = e ∈ EG
yi if linkG(p) = Y [i]

Next we define the assignments of H: (1) ∀v ∈ VG we let v :=
f(prnt(v), link(v, 0), . . . , link(v, h− 1)) where f = ctrlG(v) and h is the arity of
f ; (2) ∀e ∈ EG we let e := ν; (3) ∀i ∈ m we let si := prnt(i); (4) ∀i ∈ |X| we let
xi := link(X[i]) Note that {s0, . . . , sm−1} ∪ {x0, . . . , x|X|−1} are the inner con-
nections of H while {r0, . . . , rl−1} ∪ {y0, . . . , y|Y |−1} are its outer connections.
The order of these names can be retrieved using the shuffle functions: Define

φ
−1
in : m+ |X| → NH and φ

−1
out : l + |Y | → NH as

φ
−1
in (j) ,

{
si if φ −1in (j) = i < m
xi−m if φ −1in (j) = i ≥ m φ

−1
out (j) ,

{
ri if φ −1out (j) = i < l
yi−l if φ −1out (j) = i ≥ l

11

Hence ic(H) = (φ
−1
in (0), φ

−1
in (1), . . . , φ

−1
in (m + |X| − 1)) and oc(H) =

(φ
−1
out (0), φ

−1
out (1), . . . , φ

−1
out (l + |Y | − 1)). Finally, the transformation S[[G]] pro-

duces two name choices: σin(i) , X[i] for i ∈ |X| and σout(i) , Y [i] for i ∈ |Y |.

From gs-graphs to shuffled bigraphs. Let H : (u, σu) → (v, σv) be a gs-graph
over K with name choices and let us take an instance in its isomorphism class.
The first step in transforming the gs-graph H in the corresponding shuffled
bigraph G = B[[H]] consists in defining the shuffle functions φin and φout. For
this purpose let m and l be the number of elements of sort • in the lists u and v
respectively; then for each list, for example u, define a function u• : m→ |u| that
tell us the positions in the list u of the • sort elements, and a similar function
u◦ : (|u| −m) → |u| that do the same thing on the elements of u of sort ◦. For
example if u = • ◦ ◦•, then u• = {0 7→ 0, 1 7→ 3} and u◦ = {0 7→ 1, 1 7→ 2}. With
the aid of this functions we define φin : |u| → |u| and φout : |v| → |v| as:

φin(i) ,
{
u•(i) if 0 ≤ i < m
u◦(i−m) otherwise

φout(i) ,
{
v•(i) if 0 ≤ i < l
v◦(i− l) otherwise

Now recall that in a pure signature for gs-graphs every operator, except ν,
is of the form f : • → •◦h for some h ∈ N, thus every proper assignment
over those operators takes the form n := f(n•, n0, . . . , nh−1) with n, n• of sort
• and the remaining names of sort ◦. Then, the bigraph associated to the gs-
graph H : (u, σu) → (v, σv) is G = B[[H]] = (VG, EG, ctrlG, prntG, linkG) :
〈m,X, φin〉 → 〈l, Y, φout〉 where m, l, φin, φout are defined as above, and:

– X[i] , σu(i) for each admissible i and Y [j] , σv(j) for each admissible j.
– VG , {n ∈ N •H | n /∈ ic(H) and n /∈ oc(H)} is composed by the •-names

that are not visible outside the gs-graph. Thus the names in VG are assigned
exactly once with a proper assignment.

– EG , {n ∈ N ◦H | n := ν ∈ H} comprises all “restricted” names of sort ◦.
– The control map ctrlG : VG → K is defined as follows. Being n ∈ VG let
n := f(n•, n0, . . . , nh−1) the unique assignment of n in H, then ctrlG(n) = f

– The parent map prntG : m] VG → VG] l is defined separately for the
elements in VG and m. For each n ∈ VG let n := f(n•, n0, . . . , nh−1) the
unique assignment of n in H, then:

prntG(n) =

{
n• if n• ∈ VG
φ −1out (j) if n• = oc(H)[j] for some j in the list range

Take instead i ∈ m and let si = ic[φ(i)]. Since si is an inner connection,
there exists in H a unique auxiliary assignment si := n.

prntG(i) =

{
n if n ∈ VG
φ −1out (j) if n = oc(H)[j] for some admissible j

– Finally we define linkG : PG]X → EG] Y . Take a port (n, i) with n ∈ VG
and let n := f(n•, n0, . . . , nh−1) be the proper assignment of n, then

linkG((n, i)) =

{
ni if ni ∈ EG
Y [φ −1out (j)− l] if ni = oc(H)[j] for some admissible j

12

Consider instead a name x = X[i] and let x = ic(H)[φin(m + i)]. The
auxiliary assignment associated to x is x := n. Thus

linkG(x) =

{
n if n ∈ EG
Y [φ −1out (i)− l] if n = oc(H)[j] for some j

We can now present our first main correspondence result:

Theorem 1. Shuffled support-equivalent bigraphs over a pure signature K are
isomorphic to gs-graphs over K with name choices.

The proof shows thatB[[S[[·]]]] is the identity function on shuffled bigraphs and
that S[[B[[·]]]] is the identity function on gs-graphs. Although not stressed here
for space limitation, the transformations S[[·]] and B[[·]] preserve composition and
tensor (see Appendix C), i.e., we can view bigraphs and gs-graphs not only as
“essentially” equivalent formulations, but as “essentially” isomorphic algebras.

4 Characterising Binding Bigraphs

While in the pure case the correspondence can be worked out smoothly, the
case of binding signatures is more challenging. At the signature level, the idea
is just to consider operators of the form K : •◦h → •◦k for h the binding
arity of K and k the free arity of K. Then we can straightforwardly define
an injective transformation from (shuffled) binding bigraphs to gs-graphs as a
suitable extension of the one in Section 3 (see Appendix D). The main difference
is that now the class of gs-graphs freely generated by the signature may contain
some elements that do not correspond to any valid binding graphs, because the
scope discipline is not enforced by the free construction. Thus the transformation
from binding bigraphs to gs-graphs is not surjective. Moreover the set of gs-
graphs that are images of bigraphs is closed under monoidal product, but not
under sequential composition. To see this, consider the gs-graphs in Fig. 4: the
two gs-graphs on the left trivially respect the scope rule, but their sequential
composition links h to the local port x of g despite h and g are siblings.

The main result we present here is the characterisation of “well-scoped” gs-
graphs in terms of a relational type system in the style of relational separation
logic [21]. We start by rephrasing the location principle for the scoping rule in
the context of gs-graphs. We say that a name n is bound to location p if p and
n appears together in the left hand side of some proper assignment in G (i.e. of
the form p, ..., n, ... := ...). Sometimes we say just that n is bound, omitting the
location p to which it is bound. If a name n is not bound then it is free (note
that, for the purpose of this section, if n is assigned by n := ν then it is not
bound and thus it is said free). If a location p is not assigned then we say it is
free. We say that q exploits n if q and n appears together in the right hand side
of some proper assignment in G (i.e. of the form ... := f(q, ..., n, ...)).

Definition 19 (legal gs-graph). A gs-graph G is legal iff for any p, q, n such
that n is bound to p and q exploits n then q <∗G p, where <∗G is the reflexive and
transitive closure of <G.

13

p1

p2

p3 p4

p5

x

f

g

h

f

f

g

h

f

giovedì 2 agosto 2012

Fig. 4. An example of composition that does not respect the scope rule

As a special case, any “pure” gs-graphs is legal because pure signatures forbid
the presence of names bound to locations. Our second main correspondence
result is:

Theorem 2. A gs-graph represents a binding bigraph iff it is legal.

The proof goes by showing that the image of a binding bigraph via the
transformation defined in Appendix D is a legal gs-graph (by contradiction, if
it was not legal, then the scoping rule would have been violated) and then by
giving a converse transformation from legal gs-graphs to binding bigraphs.

Example 5. Let us consider a binding signature with three operators f : • → •,
g : •◦ → •◦2 and h : • → •◦. The gs-graph in Fig. 4 can be defined as G = { p2 :=
f(p1) , p3 := f(p2) , p4, x := g(p2) , p5 := h(p3, x) , !(p4) , !(p5) }, which is not
legal because p3 exploits the node x (by the assignment p5 := h(p3, x)), which
is bound to p4 (by p4, x := g(p2)) and p4 is not an ancestor of p3 (i.e. p3 6<∗Gp4).

We can conveniently characterise the class of legal gs-graphs by exploiting
an elegant type system. The typing relations we are interested in are of the form
“p uses n” and “p misuses n”. We need just three inference rules:

p free p uses n

p misuses n

p, ... := f(q, ..., n, ...) n bound

q uses n

p, n1, ..., nk := f(q, ...) p uses n ∀i. n 6= ni
q uses n

Roughly the rules says that if q exploits n and n is bound to some other
location, say p′, then we must check that q be a descendant of p′. This task
is accomplished by propagating “upward” the dependency through the location

14

hierarchy until either we discover that p′ is an ancestor of q (in which case the
propagation stops) or we reach the (free) root location p, in which case the
scoping rule is violated and we assert that p misuses n. In the above example we
have the typing relation { p3 uses x , p2 uses x , p1 uses x , p1 misuses x }.

Proposition 1. A gs-graph is legal iff it induces an empty “misuses” relation.

The proof is divided in two parts. First we show that if the “misuses” relation
is not empty then the gs-graph is not legal. Conversely, we show that if a gs-graph
is not legal, then the “misuses” relation is not empty.

Theorem 3. The typing relation of G1⊗G2 is the union of the typing relations
of G1 and G2. The typing relation of G1;G2 is a superset of the union of the
typing relations of G1 and of G2.

Corollary 1. The parallel composition of two gs-graph is legal iff both are legal.
If a non legal gs-graph is used in a sequential composition the result is non legal.

Note that for computing the typing relation of G1;G2 it is enough to close
the union of the typing relations of G1 and G2 w.r.t. the type inference rules (i.e.
the reasoning is monotonic). The typing rules induce a straightforward quadratic
algorithm for checking if a gs-graph is legal or not (the complexity is O(BG ·WG)
for BG the number of • nodes in G and WG the number of bound ◦ nodes in G).

5 Concluding Remarks

In conclusion, while bigraphs and gs-graphs are equally expressive, we claim
that the presentation of gs-graphs in terms of sets of assignments combines
the expressiveness of name links with the simpler and more standard algebraic
structure of gs-monoidal theories. We believe that the relational type systems
used above to check binding gs-graphs well-formedness may also be useful for
establishing important properties of systems represented as gs-graphs.

A few observations are in place that deserves some future work. First, lean
support equivalence over bigraphs abstract away from idle edges. Roughly,
this corresponds to garbage collect restricted names that are not used and it
is convenient for representing process calculi whenever the structural axiom
(ν x)nil = nil is considered. The corresponding axiom for gs-monoidal theo-
ries would be !◦ ; ν = idε, which has not been considered in this work because it
is not part of the standard theory. At the level of abstract gs-graphs, this would
correspond to require that the underlying multi-assignments G are such that
whenever there is a name x such that G contains both x := ν and !(x), then
there is at least another assignment using x. This is a bit annoying because it
requires some additional bookkeeping and cleansing when composing gs-graphs.
Still, we are confident that our correspondence results will carry over smoothly
to ones between amended gs-monoidal theories / gs-graphs and shuffled lean-
support equivalent (binding) bigraphs.

15

Second, the research on bigraphs finds a main motivation in the reactive
system approach mentioned in the introduction, which is based on the existence
of so-called relative push-out (RPO) and idem push-out (IPO) in the category of
bigraphs. RPOs/IPOs serve to distil the labelled transitions from the reduction
rules and derive a bisimilarity equivalence that is guaranteed to be a congruence.
Some preliminary investigation for extending the RPO approach to the case of
term graphs has been reported in [7]. We conjecture that the variant of the
reactive approach based on so-called groupoidal RPOs [20] can be applied to the
category of shuffled bigraphs and hence of gs-graphs. Moreover, we would like to
exploit the gs-monoidal structure and 2-categorical rewriting techniques, along
the lines of [5], to define a reference theory of concurrent rewrites for bigraphs
and gs-graphs, which is currently missing.

Third, the fact that legal gs-graphs do not compose may suggest that their
interfaces miss some additional information. In fact, while we can always repre-
sent binding bigraphs as legal gs-graphs, the interfaces of gs-graphs remain the
ones defined in the encoding for pure bigraphs and thus they are not able to pair
names and the locations they are bound to. One possible solution could be to
fix some convention from which the binding information can be automatically
inferred. For example, we can assume that the names (◦) listed in the interface
are bound to the rightmost location (•) appearing on their right, if any (and
they are free otherwise) and use such hypotheses for checking that the gs-graph
is legal or not. Yet, the information about the sharing of names between two
or more location would get lost. We discarded this approach because, e.g., it
would forbid the composition of legal gs-graphs with many arrows (i.e. symme-
tries like ρ◦,•) that has no effect whatsoever on the essence of the gs-graph, but
would change the hypotheses under which it has been tagged as legal. We plan
to investigate this issue in more detail, as we think it has still many advantages
over other proposals, like [10], which resort to the introduction of a much more
powerful closed monoidal structure for the purpose.

Fourth, we would like to extend the comparison between binding bigraphs
and legal gs-graphs to the algebra of graphs with nesting proposed in [1].

References

1. R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and U. Montanari. On
gs-monoidal theories for graphs with nesting. In Graph Transformations and Model-
Driven Engineering, volume 5765 of LNCS, pages 59–86. Springer, 2010.

2. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connection.
Theor. Comput. Sci., 286(2):247–292, 2002.

3. R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic program-
ming. TPLP, 1(6):647–690, 2001.

4. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

5. A. Corradini and F. Gadducci. A 2-categorical presentation of term graph rewrit-
ing. In CTCS’97, volume 1290 of LNCS, pages 87–105. Springer, 1997.

6. A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via
gs-monoidal categories. Applied Categorical Structures, 7(4):299–331, 1999.

16

7. A. Corradini and F. Gadducci. On term graphs as an adhesive category. Electr.
Notes Theor. Comput. Sci., 127(5):43–56, 2005.

8. T. C. Damgaard and L. Birkedal. Axiomatizing binding bigraphs. Nord. J. Com-
put., 13(1-2):58–77, 2006.

9. G. L. Ferrari and U. Montanari. Tile formats for located and mobile systems. Inf.
Comput., 156(1-2):173–235, 2000.

10. R. H. G. Garner, T. Hirschowitz, and A. Pardon. Variable binding, symmetric
monoidal closed theories, and bigraphs. In CONCUR’09, volume 5710 of LNCS,
pages 321–337. Springer, 2009.

11. M. Hyland and J. Power. Two-dimensional linear algebra. Electr. Notes Theor.
Comput. Sci., 44(1):227–240, 2001.

12. O. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580, University of Cambridge, 2004.

13. O. H. Jensen and R. Milner. Bigraphs and transitions. In POPL, pages 38–49,
2003.

14. S. MacLane. Categories for the Working Mathematician. Graduate Texts in Math-
ematics 5. Springer, 2nd edition, 1998.

15. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In WADT’97, volume 1376 of LNCS, pages 18–61. Springer, 1997.

16. R. Milner. Bigraphical reactive systems. In CONCUR’01, volume 2154 of LNCS,
pages 16–35. Springer, 2001.

17. R. Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-
CL-TR-603, University of Cambridge, 2004.

18. R. Milner. Bigraphs and their algebra. Electr. Notes Theor. Comput. Sci., 209:5–
19, 2008.

19. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

20. V. Sassone and P. Sobocinski. Locating reaction with 2-categories. Theor. Comput.
Sci., 333(1-2):297–327, 2005.

21. H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334, 2007.

A Composition of GS-Graphs

Atomic gs-graphs are defined as follows:

(ops) f , {n′1, . . . , n′|u| := f(n1, . . . n|v|)} for any f ∈ Σu,v
(ids) ids , {n2 := n1} for n1, n2 of sort s

(sym) ρs,s′ , {n3 := n2 , n4 := n1} for n1, n4 of sort s′ and n2, n3 of sort s

(dup) ∇s , {n2 := n1 , n3 := n1} for n1, n2, n3 of sort s

(bang) !s , !(n) for n of sort s

Sequential and parallel composition are then defined below.
(seq): Let G1 : u → v and G2 : v → w such that oc(G1) = ic(G2) and that

no other names are shared between G1 and G2. Let A be the set of assignments
in G2 of the form n := n′ and let σ the corresponding name substitution. Their
sequential composition is the gs-graph: G1;G2 , (G1σ) ∪ (G2\A) : u → w with
ic(G1;G2) = ic(G1) and oc(G1;G2) = oc(G2).

17

(par): Let G1 : u1 → v1 and G2 : v2 → w2 such that for every name n
in G1 and n′ in G2 we have n ≤ n′. Their parallel composition is the gs-graph
G1⊗G2 : u1u2 → v1v2 = G1∪G2 for which we have ic(G1⊗G2) = ic(G1)ic(G2)
and oc(G1 ⊗G2) = oc(G1)oc(G2).

Note that, if a composition is sound at the level of sorts, it is always possible
to find suitable concrete gs-graphs in the equivalence classes that satisfy the
constraints on names required to define their composition.

B More on (Pure) Bigraphs

B.1 Composition of Place Graphs

Let P : m → n and Q : n → l two concrete place graphs with VP ∩ VQ = ∅,
then their composition is defined as Q ◦ P , (V, ctrl, prnt) : m → l, where
V , VP] VQ and

– for each v ∈ V ctrl(v) ,
{
ctrlP (v) if v ∈ VP
ctrlQ(v) if v ∈ VQ

– for each v ∈ m]V prnt(v) ,




prntP (v) if v ∈ m] VP and prntP (v) ∈ VP
prntQ(i) if v ∈ m] VP and prntP (v) = i ∈ n
prntQ(v) if v ∈ VQ

The identity place graph at m is idm , (∅, ∅K, Idm) : m → m where Idm is
the identity function on the ordinal m.

The tensor product ⊗ on interfaces is the addition of ordinals and the unit
object is 0. For i ∈ {0, 1} let Pi = (VPi

, ctrlPi
, prntPi

) : mi → ni two place
graphs having disjoint supports. Then

P0 ⊗ P1 , (VP0] VP1 , ctrlP0] ctrlP1 , prntP0⊗P1) : m0 +m1 → n0 + n1

where for each j ∈ m0 +m1

prntP0⊗P1(j) ,




prntP0

(j) if j < m0

prntP1
(j −m0) if j ≥ m0 and prntP1

(j −m0) ∈ VP1

prntP1
(j −m0) + n0 if j ≥ m0 and prntP1

(j −m0) ∈ n1

and for each v ∈ VP0] VP1

prntP0⊗P1
(v) ,




prntP0

(v) if v ∈ VP0

prntP1(v) if v ∈ VP1 and prntP1(v) ∈ VP1

prntP1(v) + n0 if v ∈ VP1 and prntP1(v) ∈ n1

Symmetries γm,n have empty support and their effect is to swap sites:

γm,n , (∅, ∅K, prnt(j) =

{
j + n if j < m
j −m if j ≥ m)

18

B.2 Composition of Link Graphs

Let L : X → Y and M : Y → Z be two link graphs such that VL ∩ VM = EL ∩
EM = ∅, then their composition is defined as: M ◦L , (V,E, ctrl, link) : X → Z,
where V , VL] VM , E , EL] EM and

– for each v ∈ V ctrl(v) ,
{
ctrlL(v) if v ∈ VL
ctrlM (v) if v ∈ VM

– given a point p ∈ X] PL] PM of M ◦ L then

link(p) ,




linkL(p) if p ∈ X] PL and linkL(p) ∈ EL
linkM (y) if p ∈ X] PL and linkL(p) = y ∈ Y
linkM (p) if p ∈ PM

The identity link graph at X is idX , (∅, ∅, ∅K, IdX) : X → X, with IdX :
X → X the identity function on the set X.

The product ⊗ is defined only on disjoint link graph interfaces, i.e. on disjoint
sets of names, and it is roughly the disjoint set union. Suppose that for i ∈ {0, 1},
Li = (VLi

, ELi
, ctrlLi

, linkLi
) : Xi → Yi are link graphs with disjoint supports

and with X0 ∩X1 = Y0 ∩ Y1 = ∅. Their product is:

L0⊗L1 , (VL0
]VL1

, EL0
]EL1

, ctrlL0
]ctrlL1

, linkL0
]linkL1

) : X0]X1 → Y0]Y1
The unit object is the empty set ∅ and the symmetries γX,Y are simply

identities on X] Y : γXY
, idX]Y .

B.3 Composition of Bigraphs

Given two concrete bigraphs G = (VG, EG, ctrlG, prntG, linkG) : 〈m,X〉 →
〈n, Y 〉 and H = 〈HP , HL〉 : 〈l, Z〉 with VG ∩ VH = EG ∩EH = ∅, their composi-
tion is defined componentwise: H ◦G , 〈HP ◦GP , HL ◦GL〉 : 〈m,X〉 → 〈l, Z〉

The identity bigraph at 〈m,X〉 is id〈m,X〉 , 〈idm, idX〉.
Given two bigraph interfaces 〈m,X〉 and 〈n, Y 〉 with X ∩Y = ∅, the product

is defined componentwise: 〈m,X〉⊗ 〈n, y〉 = 〈m⊗n,X ⊗Y 〉. The same happens
on bigraphs: let for i ∈ {0, 1} Gi = 〈GP , GL〉 : 〈mi, Xi〉 → 〈ni, Yi〉 be two
bigraphs with disjoint supports and X0 ∩X1 = Y0 ∩ Y1 = ∅, then

G0 ⊗G1 , 〈GP0 ⊗GP1 , GL0 ⊗GL1 〉 : 〈m0 +m1, X0]X1〉 → 〈n0 + n1, Y0] Y1〉

The unit object ε is the pairing of the unit objects of the place graph and
link graph products: ε = 〈0, ∅〉. Finally, for a pair of interfaces 〈m,X〉 and 〈n, Y 〉
for which the product is defined, the symmetry is γ〈m,X〉,〈n,Y 〉 , 〈γm,n, γX,Y 〉.

B.4 Discrete Normal Form

Definition 20 (prime and discrete bigraph). A bigraphical interface 〈m,X〉
is prime if m = 1 and we write it 〈X〉. A prime bigraph G : m → 〈X〉 has no
inner names and a prime outer interface. A bigraph D is discrete if it has no
closed links, and its link map is bijective.

19

Proposition 2 (discrete normal form). Every bigraph G : 〈m,X〉 → 〈n,Z〉
can be expressed uniquely, up to a renaming on Y , as G = (idn ⊗ λ) ◦D, where
λ : Y → Z is a linking and D : 〈m,X〉 → 〈n, Y 〉 is discrete.

Moreover, every discrete bigraph D may be factorised uniquely, up to a per-
mutation of the sites of each factor, as D = α⊗ ((P0 ⊗ · · · ⊗ Pn−1) ◦ π), with α
a renaming, each Pi prime and discrete, and π a permutation of all the sites.

C Composition Preserving Transformations

Proposition 3 (S[[�]] preserves operations). Suppose that G : 〈m,X, φin〉 →
〈n, Y, ψ〉, and G′ : 〈n, Y, ψ〉 → 〈l, Z, φout〉 are two well formed shuffled bigraphs.
We have that S[[G′ ◦G]] = S[[G]];S[[G′]].

Now consider G0 : 〈m0, X0, φ0〉 → 〈n0, Y0, ψ0〉 and G1 : 〈m1, X1, φ1〉 →
〈n1, Y1, ψ1〉 with X0 < X1 and Y0 < Y1, then S[[G0 ⊗G1]] = S[[G0]]⊗ S[[G1]].

Proposition 4 (B[[�]] preserves operations). Let H : (u, σu) → (v, σv) and
H ′ : (v, σv)→ (w, σw) be gs-graphs with name choices, then B[[H;H ′]] = B[[H ′]]◦
B[[H]].

Consider instead H0 : (u0, σu0
)→ (v0, σv0) and H1 : (u1, σu1

)→ (v1, σv1) gs-
graphs with name choices such that Im(σu0

) < Im(σu1
) and Im(σv0) < Im(σv1).

We have: B[[H0 ⊗H1]] = B[[H0]]⊗B[[H1]].

D Transforming binding bigraphs in gs-graphs

The construction of the gs-graph representing a certain binding bigraph is not so
different from that relative to pure bigraphs. In fact, as previously mentioned, we
can not represent the locality relations in the context of gs-graphs and the trans-
formation is forced to ignore them. Therefore we have to deal only with the added
possibility for controls to declare names. Likewise the pure case, we work with
gs-graphs equipped with name choices on the interfaces and with shuffled binding
bigraphs. The latter are defined exactly like shuffled pure bigraphs (see Defini-
tion 18), except that in place of a pure bigraph we have clearly a binding bigraph.
Let G = (VG, EG, ctrlG, prntG, linkG) : 〈m, locin, X, φin〉 → 〈l, locout, Y, φout〉 be
a shuffled binding bigraph on a signature K and denote with P locG ⊆ PG the set
of all its local ports. In particular given a node v ∈ VG such that its associated
control ctrlG(v) has a positive internal arity, we call (v, locali) the (i+ 1)th local
port declared by v.

In the gs-graph H = Sbind[[G]] the following names will appear:

N •H = VG] {s0, . . . , sm−1}] {r0, . . . , rl−1}
N ◦H = EG] {x0, . . . , x|X|−1}] {y0, . . . , y|Y |−1}

Note that such sets of names are the same of those defined by the analogous
transformation for the pure case. The difference is in the role played by the
edges since in binding bigraphs they can be attached to local ports. In the

20

corresponding gs-graph such local edges are not assigned with the restriction
operator ν, but within the proper assignment of the node that declares the local
port to which it is linked. Since every edge can be attached to at most one
local port (see Definition 14) we are guaranteed that each local edge is assigned
exactly once. In the following we denote with ElocalG the set of all local edges
belonging to the bigraph G.

As in Section 3 the overlined maps prnt : m]V → N •H and link : PG]X →
N ◦H will help us in having a more concise representation of the assignments of H
and we do not make any change to them. Nevertheless we report their definition
here for a more quick reference.

prnt(v) =

{
w if prntG(v) = w ∈ VG
ri if prntG(v) = i ∈ l link(p) ,

{
e if linkG(p) = e ∈ EG
yi if linkG(p) = Y [i]

Then we give the definitions of the assignments in H.

– ∀v ∈ VG with ctrlG(v) = f we add the assignment

v link(v, local0) . . . link(v, localk−1) := f(prnt(v), link(v, 0), . . . , link(v, k−1))

where k and h are respectively the binding and the free arity of f . Note that
since in binding bigraph a local port can be linked to an outer name, the
link map and its overlined version applied on a local port return always an
edge (that clearly is local).

– ∀e ∈ EG\ElocalG we add e := ν
– ∀i ∈ m we add si := prnt(i)
– ∀x ∈ {x0, . . . , x|X|−1} we add xi := link(X[i])

The inner and the outer connections are {s0, . . . , sm−1}∪{x0, . . . , x|X|−1} and
{r0, . . . , rl−1}∪{y0, . . . , y|Y |−1} respectively and their order is obtained through
the shuffle functions. In particular

ic(H) = (φ
−1
in (0), φ

−1
in (1), . . . , φ

−1
in (m+ |X| − 1))

oc(H) = (φ
−1
out (0), φ

−1
out (1), . . . , φ

−1
out (l + |Y | − 1))

where φ
−1
in and φ

−1
out are defined as in Section 3.

In conclusion the name choices for the interfaces of Sbind[[G]] are σin(i) , X[i]
for i ∈ |X| and σout(i) , Y [i] for i ∈ |Y |.

We can now prove that the gs-graphs produced by Sbind[[�]] effectively repre-
sent binding bigraphs, or better, their bodies. We could not indeed encode the
locality relation on the gs-graph interfaces, but we can show that the internal
structure of a binding bigraph is faithfully represented.

For this purpose we abstract from the locality relation put on the interfaces
and we identify all the binding bigraphs that differ only in these relations. We
write G ≈ G′ if G and G′ are such two bigraphs and it follows immediately that ≈
is an equivalence relation. Furthermore, since Sbind[[�]] does not take into account

21

the locality relation, we have that G ≈ G′ implies Sbind[[G]] = Sbind[[G
′]] and

therefore we can give a well-defined mapping on equivalence classes Sbind\≈[[�]]
such that Sbind\≈[[[G]]] = Sbind[[G]], where [G] denote the equivalence class of G.

Proposition 5. The mapping Sbind\approx[[�]] is injective.

Unfortunately this mapping is not surjective. Next proposition guarantees
that in the image of the mapping Sbind[[�]] there are no unacceptable gs-graphs.

Proposition 6. Let G be a binding bigraph. If in Sbind[[G]] there are an as-
signment n . . . := f(v, . . . , e, . . .) and an assignment w . . . e . . . := g(. . .) then
w <+ v.

Finally we show that Sbind[[�]] preserves the operations.

Proposition 7 (Sbind[[�]] preserves operations). Let G : 〈m, locI , X, φin〉 →
〈n, locJ , Y, ψ〉 and G′ : 〈n, locJ , Y, ψ〉 → 〈l, locH , Z, φout〉, be shuffled binding
bigraphs. Then Sbind[[G

′ ◦G]] = Sbind[[G]];Sbind[[G
′]]

Suppose that (G0 : 〈m0, locI0 , X0, φ0〉 → 〈n0, locJ0 , Y0, ψ0〉) and (G1 :
〈m1, locI1 , X1, φ1〉 → 〈n1, locJ1 , Y1, ψ1〉) are shuffled binding bigraphs with X0 <
X1 and Y0 < Y1. Then Sbind[[G0 ⊗G1]] = Sbind[[G0]]⊗ Sbind[[G1]]

22

Algorithms and data structures for massive
data: what’s next?

Paolo Ferragina

Dipartimento di Informatica
University of Pisa, Italy
ferragina@di.unipi.it

Abstract. In this talk I’ll survey the last 30 years of data-structure
design, showing that the storage and indexing of large datasets has led
algorithm and software developers to optimize, in the course of these
years, several computational resources, such as time, space, I/Os, com-
pression, just to name a few. One of the key results of this impressive flow
of research has been that, nowadays, it is known how to index almost
any (complex) data type in compressed space and to efficiently support
various kinds of query operations. In many cases, the asymptotic per-
formance obtainable over the compressed data is equivalent to the one
achievable over the original (and uncompressed) raw data; sometimes,
compression induces even a speed-up in practice because of a better use
of memory/IO/CPU resources.
Recently, the advent of (big) data centers and the ubiquitous use of mo-
bile devices, has raised the attention toward another resource: energy
efficiency. This triggered a significant amount of research in all areas of
IT, leading to believe that improvements in the energy efficiency of com-
puting devices will be much more dramatic, and eventually have much
greater impact, than in other areas of technology. However, the average
power consumption and computation rates of computing devices are in-
tricately tied together, making it difficult to speak of power complexity
in isolation. So the next challenge will be, in my opinion, to design algo-
rithms and data structures which optimize, or trade in a principled way,
various computational resources simultaneously. This is what system en-
gineers are addressing everyday by means of proper heuristics. But we
will argue in this talk that this design is sophisticated to be done in
a principled way, and needs a joint effort with other CS fields, such as
Operational Research and Graph Theory.

23

On the expressive power of the shuffle product
(Extended Abstract)

Antonio Restivo

Dipartimento di Matematica e Informatica, Università di Palermo, Palermo Italy

1 Introduction

A very general problem in the theory of formal languages is, given a ”basis”
of languages and a set of operations, to characterize the family of languages
expressible from the ”basis” by using the operations. In practice, a basis of
languages will consists of a set of very simple languages, such as the languages
of the form {a}, where a is a letter of the alphabet. In the theory of regular
languages, the operations taken into account are usually the Boolean operations,
the concatenation and the (Kleene) star operation.

In this setting, two families of languages play a fundamental role: the family
REG of regular languages, and the family SF of star-free languages. REG is
defined as the smallest family of languages containing the languages of the form
{a}, where a is a letter, and {ε}, where ε is the empty word, and closed under
union, concatenation and star. It is well known that the family REG is closed
also under all Boolean operations. The family SF of star-free languages is the
smallest family of languages containing the languages of the form {a} and {ε},
and closed under Boolean operations and concatenation.

Another operation that plays an important role in the theory of formal lan-
guages is the shuffle operation. Recall that the shuffle product (or simply shuffle)
of two languages L1, L2 is the language

L1 � L2 = {u1v1...unvn|n ≥ 0, u1...un ∈ L1, v1...vn ∈ L2}.

It is well known (cf [5]) that the family REG of regular languages is closed under
shuffle. The study of subfamilies of regular languages closed under shuffle is a
difficult problem, partly motivated by its applications to the modeling of process
algebras [1] and to program verification.

In particular, we here consider the smallest family of languages containing
the languages of the form {a} and {ε}, and closed under Boolean operations,
concatenation and shuffle. Let us call intermixed the languages in this family,
which is denoted by INT. It is perhaps surprising that the following important
problem in the theory of regular languages is still open, and to a large extent
unexplored.

Problem 1 Give a (decidable) characterization of the family INT.

24

In this talk we discuss this problem: we present some partial results and we
introduce new special problems as possible steps in the characterization of the
family INT. Such partial results and special problems show the deep connec-
tions of Problem 1 with other relevant aspects of formal languages theory and
combinatorics on words. The results here presented are essentially based on the
papers [2] and [3].

2 Star-Free and Intermixed Languages

In [2] it is proved the following theorem showing that the family INT of inter-
mixed languages is strictly included in the family REG of regular languages and
strictly contains the family SF of star-free languages.

Theorem 21 SF INT REG

Moreover, in [2] it is shown that the family INT is closed under quotients,
but it is not closed under inverse morphism. Therefore, the family INT is not
a variety of languages (cf [11]), and so it cannot be characterized in terms of
syntactic monoids.

Let us recall (cf [9])that a language L ⊆ Σ∗ is said to be aperiodic, or non-
counting, if there exists an integer n > 0 such that for all x, y, z ∈ Σ∗ one
has

xynz ∈ L⇔ xyn+1z ∈ L.
A fundamental theorem of Schutzenberger states that a regular language is star-
free if and only if it is aperiodic.

The strict inclusion between the families SF and INT implies that the shuf-
fle of two star-free languages in general is not star-free. This means, roughly
speaking, that the shuffle creates periodicities.

In order to enlighten on the difficult Problem 1, in this talk we consider the
following

Problem 2 Determine conditions under which the shuffle of two star-free lan-
guages is star-free too.

A first condition is obtained in [3] by introducing a weaker version of the
shuffle product, called bounded shuffle.

Let k be a positive integer. The k-shuffle of two languages L1, L2 ⊆ Σ∗ is
defined as follows:

L1 �k L2 = {u1v1...umvm|m ≤ k, u1...um ∈ L1, v1...vm ∈ L2}.
Any k-shuffle is called bounded shuffle. It is not difficult to show that the

family REG of regular languages is closed under bounded shuffle. In [3] it is
proved the following theorem.

25

Theorem 22 SF is closed under bounded shuffle, i.e. if L1, L2 ∈ SF then
L1 �k L2 ∈ SF , for any k ≥ 1.

One can derive the following corollary.

Corollary 23 The shuffle of a star-free language and a finite language is star-
free.

3 Partial Commutations

The family SF is closed under concatenation and it is not closed under shuffle.
What is the difference between concatenation and shuffle?

In this section we introduce an operation between languages, that generalizes
at the same time concatenation and shuffle, and we investigate the closure of SF
with respect to this operation. The new operation is defined by introducing a
partial commutation between the letters of the alphabet, and its appropriate
setting is the theory of traces (cf [4]).

Let Γ be a finite alphabet and let θ ⊆ Γ × Γ be a symmetric and irreflexive
relation called the (partial) commutation relation. We consider the congruence
∼θ of Γ ∗ generated by the set of pairs (ab, ba) with (a, b) ∈ θ. If L ⊆ Γ ∗ is a
language, [L]θ denoted the closure of L by ∼θ, and L is closed by ∼θ if L = [L]θ.
The closed subsets of Γ ∗ are called trace languages.

Let now L1 and L2 be two languages over the alphabet Σ

Let us consider two disjoint copies Σ1 and Σ2 of the alphabet Σ, i.e. such
that Σ1 ∩ Σ2 = ∅, and the isomorphism σ1 from Σ∗1 to Σ∗ and σ2 from Σ∗2 to
Σ∗.

Let L′1 (L′2 resp.) be the subset of Σ∗1 (Σ∗2 resp.) corresponding to L1 (L2

resp.) under the isomorphism σ1 (σ2 resp.). Let us consider the morphism σ :
(Σ1 ∪Σ2)∗ → Σ∗ defined as follows:

σ(a) =

{
σ1(a), if a ∈ Σ∗1 ;
σ2(a), if a ∈ Σ∗2 .

Let θ be of the form θ ⊆ Σ1 ×Σ2. The θ − product (denoted by �θ) of the
languages L1, L2 ⊆ Σ∗ is defined as follows:

L1 �θ L2 = σ([L′1L
′
2]θ).

Remark that the product (concatenation) and the shuffle correspond to two
special (extremal) cases of the θ−product. Indeed, if θ = ∅ then L1�θL2 = L1L2,
and, if θ = Σ1 ×Σ2, then L1 �θ L2 = L1 � L2.

The partial commutation θ ⊆ Σ1 ×Σ2 induces a partial commutation θ′ on
Σ defined as follows: if (a, b) ∈ θ the (σ1(a), σ2(b)) ∈ θ′.

In [6] it is proved the following theorem.

26

Theorem 31 Let L1 and L2 be two languages closed under θ′, i.e., [L1]θ′ = L1

and [L2]θ′ = L2. If L1 and L2 ∈ SF , then L1 �θ L2 ∈ SF .

The theorem states, roughly speaking, that, if internal commutation (i.e., the
commutations allowed inside each of the languages L1 and L2) is the ”same” as
the external commutation (i.e., the commutations between the letters in L1 and
the letters in L2), then the θ − product preserves the star-freeness.

Special cases of the previous theorem are the well known result that the
concatenation of two star-free languages is star-free, and the result of J.F. Perrot
(cf [10]) that the shuffle of two commutative star-free languages is star-free.

4 Unambiguous Star-Free languages

In this section we investigate some conditions for Problem 2, related to the
unambiguity of the product of languages.

A language L ⊆ Σ∗ is a marked product of the languages L0, L1, ..., Ln if

L = L0a1L1a2L2...anLn,

for some letters a1, a2, ..., an of Σ.

It is known (cf [13]) that the family SF of star-free languages is the smallest
Boolean algebra of languages of Σ∗ which is closed under marked product.

A marked product L = L0a1L1a2L2...anLn is said to be unambiguous if every
word u of L admits a unique decomposition

u = u0a1u1...anun,

with u0 ∈ L0, u1 ∈ L1, ..., un ∈ Ln. For instance, the marked product {a, c}∗a{ε}b{b, c}∗
is unambiguous.

Let us define the family USF of unambiguous star-free languages as the small-
est Boolean algebra of languages of Σ∗ containing the languages of the form A∗,
for A ⊆ Σ, which is closed under unambiguous marked product (cf [13]).

The family USF is a very robust class of languages: the languages in this
family admit indeed several other nice characterizations (see [15] for a survey).

It can be shown that USF is strictly included in SF, and so we have the
following chain of inclusions:

USF SF INT REG.

The following theorem, proved in [3], shows the role of unambiguity in Prob-
lem 2.

Theorem 41 If L1 and L2 ∈ USF , then L1 � L2 ∈ SF .

27

5 Cyclic Submonoids and Combinatorics on Words

The languages in the family USF can be described by regular expressions in
which the star operation is restricted to subsets of the alphabet. Furthermore,
Theorem 41 states that the shuffle of languages in this family is star-free. Hence,
the critical situations, with respect to Problem 2, occur with languages corre-
sponding to regular expressions in which the star operation is applied to con-
catenation of letters. So, in this section, we consider the shuffle of languages of
the form u∗, where u is a word of Σ∗. Actually, such languages correspond to
cyclic submonoids of Σ∗.

The special interest of such languages in our context is shown by the following
theorem, proved in [2].

Theorem 51 If the word u contains more than one letter, then the language u∗

is intermixed.

Moreover, next theorem, firstly proved in [9], shows that the combinatorial
properties of the word u play a role in Problem 2. Let us first introduce a
definition. A word u ∈ Σ∗ is primitive if it is not a proper power of another
word of Σ∗, i.e., if the condition u = vn, for some word v and integer n, implies
that u = v and n = 1.

Theorem 52 The language u∗ is star-free if and only if u is a primitive word.

We now consider the shuffle u∗ � v∗ of two cyclic submonoids generated by
the words u and v, respectively. If u and v are primitive words then, by the
previous theorem, u∗ and v∗ are star-free languages. Remark that the languages
u∗ and v∗ do not belong to USF, and their shuffle, in general, is not star-free.
Here we study the conditions under which the language u∗ � v∗ is star-free.

Let us consider some examples. If u = b and v = ab, the language b∗�(ab)∗ =
(b + ab)∗ is star-free. Let us consider now u = aab and v = bba, the language
(aab)∗ � (bba)∗ is not star-free. Indeed the language

((aab)∗ � (bba)∗) ∩ (ab)∗ = ((ab)3)∗

is not star-free, by the Theorem 52

Problem 3 : Characterize the pairs of primitive words u, v ∈ Σ∗ such that
u∗ � v∗ is a star-free language.

This last problem is closely related to some relevant questions in combina-
torics on words. Recall that combinatorics on words is a fundamental part of
the theory of words and languages. It is deeply connected to numerous differ-
ent fields of mathematic and its applications, and it emphasizes the algorithmic
nature of many problems on words (cf [7]).

Some important problems in combinatorics on words pertain to the non prim-
itive words that appear in the set u+v+, where u and v are primitive words.

A remarkable result in this direction is the famous Lyndon-Schutzenberger
theorem (cf [8]), originally formulated for the free groups.

28

Theorem 53 If u and v are distinct primitive words, then the word unvm is
primitive for all n,m ≥ 2.

The next theorem, proved by Shyr and Yu ([14]), can be considered as a light
improvement of the previous result.

Theorem 54 If u and v are distinct primitive words, then there is at most one
non-primitive word in the language u+v+.

Problem 3 is, in a certain sense, related to those considered in the previous
theorems, with the difference that we here take into account the shuffle of the
two languages u+ and v+, instead of their concatenation. Actually, Problem 3
leads to investigate the non-primitive words that appear in the language u+�v+,
where u and v are primitive words. In particular, we are interested to investigate
the exponents of the powers that appear in u+ � v+.

Let us introduce further notation. Let us denote by Q the set of primitive
words. For u, v, w ∈ Q, let p(u, v, w) be the integer k such that

u∗ � v∗ ∩ w∗ = (wk)∗.

Remark that, if u∗ � v∗ ∩ w∗ = {ε}, then p(u, v, w) = 0. For u, v ∈ Q, let us
define the set of integers

P (u, v) = {p(u, v, w)| w ∈ Q}.

For instance, if we consider the words u = a10b, v = b, then P (u, v) = {0, 1, 2, 5, 10}.
The following problem is closely related to Problem 3.

Problem 4 : Given two primitive words u, v, characterize the set P (u, v) in
terms of the combinatorial properties of u and v.

References

1. Baeten, J., Weijland, W.: Process Algebra, Cambridge University Press, 1990.
2. Berstel, J., Boasson, L., Carton, O., Pin, J.-E., Restivo, A.: The expressive power

of the shuffle product, Inf. Comput., 208(11), 2010, 1258–1272.
3. Castiglione, G., Restivo, A.: On the Shuffle of Star-Free Languages, Fundam.

Inform., 116(1-4), 2012, 35–44.
4. Diekert, V.: The Book of Traces, World Scientific Publishing Co., Inc., River Edge,

NJ, USA, 1995, ISBN 9810220588.
5. Eilenberg, S.: Automata, Languages, and Machines, Academic Press, Inc., Orlando,

FL, USA, 1976.
6. Guaiana, G., Restivo, A., Salemi, S.: Star-Free Trace Languages, Theor. Comput.

Sci., 97(2), 1992, 301–311.
7. Lothaire, M.: Algebraic Combinatorics on Words, Cambridge University Press,

2002.

29

8. Lyndon, R. C., Schützenberger, M. P.: The equation aM = bNcP in a free group,
Michigan Math. J., 9(4), 1962, 289–298.

9. McNaughton, R., Papert, S.: Counter-Free Automata, MIT Press, Cambridge,
1971.

10. Perrot, J. F.: Varietes de Langages et Operations, Theor. Comput. Sci., 7, 1978,
197–210.

11. Pin, J.-E.: Varieties of formal languages, North Oxford, LondonPlenum, New-York,
1986, (Traduction de Variétés de langages formels).

12. Pin, J.-E.: Syntactic semigroups, in: Handbook of formal languages (G. Rozenberg,
A. Salomaa, Eds.), vol. 1, chapter 10, Springer, 1997, 679–746.

13. Pin, J.-E.: Theme and variations on the concatenation product, Proceedings of the
4th international conference on Algebraic informatics, CAI’11, Springer-Verlag,
Berlin, Heidelberg, 2011, ISBN 978-3-642-21492-9, 44–64.

14. Shyr, H. J., Yu, S. S.: Non-primitive words in the Language p+q+, Soochow J.
Math., 20(4), 1994, 535–546.

15. Tesson, P., Therien, D.: Diamonds Are Forever: The Variety DA, Semigroups,
Algorithms, Automata and Languages, Coimbra (Portugal) 2001, World Scientific,
2002, 475–500.

30

Simulating EXPSPACE Turing machines
using P systems with active membranes

Artiom Alhazov1,2, Alberto Leporati1, Giancarlo Mauri1, Antonio E. Porreca1,
and Claudio Zandron1

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

artiom.alhazov@unimib.it
{leporati,mauri,porreca,zandron}@disco.unimib.it

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

1 Introduction

P systems with active membranes [2] are parallel computation devices inspired
by the internal working of biological cells. Their main features are a hierarchy of
nested membranes, partitioning the cell into regions, and multisets of symbol-
objects describing the chemical environment. The system evolves by applying
rules such as non-cooperative multiset rewriting (i.e., objects are individually
rewritten), communication rules that move the objects between adjacent regions,
and membrane division rules that increase the number of membranes in the
system. The membranes also possess an electrical charge that works as a local
state, regulating the set of rules applicable during each computation step. The
rules, in turn, may change the charge of the membrane where they take place.

In order to solve computational problems one usually employs polynomial-
time uniform families of P systems with active membranes, consisting of a P sys-
tem Πn for each input length n (as for Boolean circuits) and a single Turing
machine constructing Πn from n in polynomial time. The actual input is then
encoded as a multiset of objects, and placed inside an input membrane of Πn.
The space required by a family of P systems (in terms of number of membranes
and objects) for solving a decision problem can then be analysed as a function
of n. It is already known that polynomial-space P systems and polynomial-space
Turing machines are equal in computing power [3], but the proof of this result
does not generalise to larger space bounds. In this paper we show the key ideas
needed in order to prove the exponential-space analogue of that result by directly
simulating deterministic exponential-space Turing machines using P systems.

For the full technical details of the results presented here we refer the reader
to the paper “The computational power of exponential-space P systems with
active membranes” [1] by the same authors.

31

2 Simulating Turing machines

We describe how deterministic Turing machines working in exponential space
can be simulated by P systems by means of an example. Let M be a Turing
machine processing an input x of length n = 2 and requiring 2n = 4 auxiliary
tape cells (the total length of the tape is then 6); assume that the alphabet ofM
consists of the symbols a and b. Suppose that the current configuration C of M
is the one depicted on the left of the following picture, and that the transition
it performs leads it to the configuration C′ on the right. In the picture, the tape
cells of M are identified by a binary index.

bb
a b

q

000 001
010 011

100 101

ab
a b

q′

000 001
010 011

100 101

We encode the configuration C of M as the following configuration of the P sys-
tem Π simulating it:

t t t t t t

tba2 1 0
s

00
b

0 02
b

0 02 11 00
a

0 02 11 10
b

0 12 01 00
t

0 12 01 10
t

0

q 0000 0 +

0

100102 01

In this picture, the label of a membrane is indicated at its lower-right corner,
while its electrical charge (+, 0, or −) is at its upper-right corner. The symbols
located inside the membranes represent the objects in the configuration of Π.

The P system, beside its external membrane s, possesses 6 membranes la-
belled by t (called the tape-membranes) corresponding to the tape cells of M ;
each tape-membrane contains 3 subscripted bit-objects encoding the index of
the corresponding tape cell (the subscript represents the position of the bit in
the index; for instance, the presence of bit-object 10 indicates that 1 is the least
significant bit). Furthermore, each tape-membrane contains an object represent-
ing the symbol written in the corresponding tape cell of M , where t represents
a blank cell. Only one tape membrane is part of the initial configuration of Π,
as it can be at most polynomial in size; the other ones are created by membrane
division during an initialisation phase of Π, before simulating the first step ofM .

A state-object q represents the current state of M ; this object will also reg-
ulate the simulation of the next step of M . The position of the tape head is
encoded in binary as the electrical charges of the membranes 0, 1, 2 (the position-
membranes); the label of each membrane represents the position of the corre-
sponding bit, while its charge the value of the bit: a neutral charge represents a 0,

32

and a positive charge a 1. In the example above, the charges of membranes 2, 1, 0
are 0, 0,+, encoding the binary number 001 (decimal 1).

Finally, the auxiliary membranes labelled by a, b,t (the symbol-membranes)
in the lower-right corner correspond to the tape symbols of M , and are used in
order to read the symbol on the current tape cell.

The following picture shows how the next step of M is simulated.

t t t t t t

tba2 1 0
s

00
b

0 02
b

0 02 11 00
a

+ 02 11 10
b

0 12 01 00
t

0 12 01 10
t

0

q 00+0 0 +

0

100102 01

First, the object q nondeterministically guesses a tape-membrane t (all such
membranes are indistinguishable from the outside) and enters it (thick arrow
in the picture) while changing the charge to positive. The change of charge en-
ables the bit-objects inside it to move to the corresponding position-membranes
(along the thin arrows), where their values are compared to the charges of the
membranes; this allows us to check whether the tape-membrane we guessed is
indeed the one under the tape head of M . In the mean time, the object a is sent
to the corresponding symbol-membrane (dashed arrow) in order to change the
charge to positive.

Since in the example the tape-membrane that was chosen is not the correct
one, an error-object is produced by one of the mismatched position-bits, and the
configuration of Π is restored to the initial one, with the following exception:
the charge of the tape-membrane is set to negative, so it will not be chosen
again. The P system then proceeds by guessing another tape-membrane among
the remaining (neutrally charged) ones. After a number of wrong guesses, the
configuration of Π will be similar to the following one.

t t t t t t

tba2 1 0
s

00
b

− 02
b

0 02 11 00
a

− 02 11 10
b

0 12 01 00
t

− 12 01 10
t

0

q 0000 0 +

0

100102 01

When the tape-membrane corresponding to the current cell of M is finally
guessed, we can perform the actual simulation of the computation step (updating
the position of the head, the symbol on the tape, and the state ofM). The state-
object may first read the tape symbol by looking at the only positively charged
symbol-membrane; it can then update the charges of the position-membranes
(from the least to the most significant bit) in order to increment or decrement
the binary number they encode, produce the new tape symbol (b in the example)

33

and finally rewrite itself as the new state of M (q′ in the example). The charges
of all tape- and symbol-membranes are also reset to neutral by using auxiliary
objects. The configuration of Π corresponding to the new configuration of M
thus becomes the following one.

t t t t t t

tba2 1 0
s

00
b

0 02
a

0 02 11 00
a

0 02 11 10
b

0 12 01 00
t

0 12 01 10
t

0

q′ 0000 + 0

0

100102 01

Now the P system continues simulating the next steps of M , until an accepting
(resp., rejecting) state is reached; when this happens, the P system produces
a yes (resp., no) object that is sent out from the outermost membrane as the
result of the computation.

3 Conclusions and open problems

The simulation described in the previous section can be carried out by a poly-
nomial time uniform family of P systems with active membranes operating in
space O

(
s(n) log s(n)

)
, where s(n) is the space required by the simulated Turing

machine on inputs of length n. Since an analogous result holds in the opposite di-
rection [3, Theorem 5], the two classes of devices solve exactly the same decision
problems when working withing an exponential space limit.

The techniques employed here do not carry over to the simulation of super-
exponential space Turing machines, since they would require a super-polynomial
number of subscripted objects in order to encode tape positions; this amount of
objects (and their associated rules) cannot be constructed using a polynomial-
time uniformity condition. Novel techniques will be probably needed in order
to prove that the equivalence of Turing machines and P systems also holds for
larger space bounds.

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computa-
tional power of exponential-space P systems with active membranes. In: Martínez-
del-Amor, M.A., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J., Valencia-
Cabrera, L. (eds.) Tenth Brainstoming Week on Membrane Computing, vol. I, pp.
35–60. Fénix Editora (2012)

2. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

3. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes working in polynomial space. International Journal of Foundations of Com-
puter Science 22(1), 65–73 (2011)

34

Behavioural Equivalences
over Mobile Membranes with Delays

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
and “A.I.Cuza” University of Iaşi, Romania

Email: baman@iit.tuiasi.ro and gabriel@info.uaic.ro??

Abstract. Mobile membranes with delays represent a biological inspired
formalism able to model systems involving timing, explicit locations and
mobility. We define a number of behavioural equivalences over this for-
malism, and prove some relationships between these equivalences.

1 Introduction

During the last years, membrane computing [3, 6] has been applied to Biology. It
may have an important impact in understanding how biological systems work,
giving also a way to describe, manipulate, analyse and verify them. Behavioural
equivalence is an important concept in biology needed for analysing and com-
paring the organs behaviour. For example, an artificial organ is the functional
equivalent of the natural organ, meaning that both behave in a similar manner.

Using mobile membranes, we are interested either in locations, times of evo-
lution, mobility objects, or in combinations of these concepts. Thus we define
several equivalences, showing that some of them are finer that others, and that
some of them are incomparable. Defining several equivalences, we offer flexibility
in selecting the right one when verifying biological systems and comparing them.

What we do in this paper is a first step towards establishing the formal frame-
work used in software verification for biological systems sensitive to timeouts.

2 Systems of Mobile Membranes with Delays

Systems of simple mobile membranes [4] are a particular class of membrane com-
puting [6], while several types of mobile membranes were studied in detail in [2].
We use a rule-based model of computation called systems of mobile membranes
with delays in order to model complex biological processes.

Definition 1. A system of mobile membranes with delays is a construct
Π = (Ot, H, µ, w1, . . . , wn, R), n ≥ 1 (the degree of the system), where:

1. Ot = O×N is a set of objects with delays, where O is an alphabet of objects,
and (a, ta) ∈ Ot represents an object a together with its delay ta ≥ 0;

?? The work of Gabriel Ciobanu was supported by a grant of the Romanian Na-
tional Authority for Scientific Research, CNCS-UEFISCDI, project number PN-
II-ID-PCE-2011-3-0919, while the work of Bogdan Aman was supported by POS-
DRU/89/1.5/S/49944.

35

2. H is a finite set of labels for membranes;
3. µ ⊂ H ×H describes the membrane structure, such that (i, j) ∈ µ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
4. w1, w2, . . . , wn are multisets over Ot, describing the initial multisets of ob-

jects with delays placed in the n regions of µ;
5. R is a finite set of evolution rules of the following forms, where h,m ∈ H,

(a, 0), (a, 0), (c, tc), (b, tb), (a, ta), (a, ta − 1) ∈ Ot:

(a) [(a, 0)]
h
[(a, 0)]

m
→ [[(c, tc)]h(b, tb)]m endocytosis

an elementary membrane h containing (a, 0) enters membrane m con-
taining (a, 0); (a, 0) is rewritten to (c, tc), and (a, 0) is rewritten to (b, tb);

(b) [[(a, 0)]
h
(a, 0)]

m
→ [(c, tc)]h[(b, tb)]m exocytosis

an elementary membrane h containing (a, 0) exits membrane m contain-
ing (a, 0); (a, 0) and (a, 0) are rewritten to (c, tc) and (b, tb), respectively;

(c) [(a, 0)]
h
→ [(c, tc)]h[(b, tb)]h elementary division

if containing (a, 0), a membrane h is divided into two membranes with
the same label m, and (a, 0) is rewritten to (b, tb) and (c, tc);

(d) [(a, ta)]h [(a, ta − 1)]h delay decrementing
if ta > 0 then (a, ta) placed inside membrane h is rewritten to (a, ta−1).

In terms of computation, we are working with membrane configurations (ranged
over by M,N, . . .) and with the free monoid O∗t (ranged over by ut, vt, . . .).

Definition 2. The set M(Π) of membrane configurations in a membrane sys-
tem Π is inductively defined as follows:

• if i ∈ H and ut is a multiset over Ot then 〈i;ut〉 ∈ M(Π); 〈i;ut〉 is called
an elementary membrane configuration;

• if i ∈ H, M1, . . . ,Mn ∈ M(Π), n ≥ 1, and ut is a multiset over Ot then
〈i;ut, M1 . . .Mn〉 ∈ M(Π); 〈i;ut, M1 . . .Mn〉 is a composite membrane.

Definition 3. For a membrane system Π, if M,N ∈M(Π) then:

• M reduces to N (denoted by M 7→ N) if there exists a rule in R, applicable
to membrane M such that we can obtain membrane N . We use 7→ to stand
for both → and . We denote by n a sequence of n ≥ 1 reductions .

3 Behavioural Equivalences

These equivalence relationships are useful when checking the “healthiness” of a
system. For example, take two healthy systems M and N that are in a relation-
ship of barbed bisimulation. If they are both infected with a virus and evolved
into M ′ and N ′, through the barbed bisimulation, it is easy to check if they are
infected with a virus of the same kind (each virus has an unique behaviour and
is activated by an unique trigger).

In what follows, in order to distinguish between normal and abnormal be-
haviours, we define various barbed bisimulation as in [5], and specify first what
is observable. To emphasize the mobility aspects, the objects involved in endo-
cytosis and exocytosis rules are observable.

36

To avoid ambiguity, we consider that the objects involved in endocytosis and
exocytosis rules belong to the sets of objects Oexo and Oendo, respectively, such
that Oexo ∈ Ot, Oendo ∈ Ot and Oendo∩Oexo = ∅. In what follows, let x ∈ {endo,
exo} represent the possible movements, u′t, u

′′
t arbitrary multisets of objects with

delays, N,M,M ′ configurations, and m ∈ H a membrane label.
A barb predicate ↓x(a) (↓x(a)@m, ↓tax(a), ↓

ta
x(a)@m) is defined by the rule:

M ↓x(a) (M ↓x(a)@m, M ↓tax(a), M ↓
ta
x(a)@m, respectively)

iff M ≡ 〈m; (a, ta)] u′t, N〉 ‖M ′, where a ∈ Ox.

Definition 4. A barbed bisimulation S in terms of mobility is a symmetric bi-
nary relation over membrane configurations such that for all (M,N) ∈ S, n ∈ N
1. if M ↓x(a), then N ↓x(a) for any barb predicate ↓x(a);
2. if M n→M ′, then exists N ′ such that N n→ N ′ and (M ′, N ′) ∈ S.

Two membrane configurations are barbed bisimilar, in terms of mobility, denoted
M ∼mob N , if and only if (M,N) ∈ S for some barbed bisimulation S.

It is rather natural to strengthen the observing power of the previous de-
fined barbs by allowing the observer to look also at the label (location) of the
membrane containing the object that facilitates a movement.

The barbed bisimulation ∼Lmob, in terms of location and mobility, is de-
fined similarly with the barbed bisimulation ∼mob, by using the barb predicate
↓x(a)@m. This bisimulation compares membrane configurations by looking also
at the label of the membrane containing an object that facilitates a movement.

Bisimulation relations are represented and studied as sets of pairs of mem-
brane configurations. Thus the comparison between bisimilarities are set-theoretic.

Proposition 1 (∼mob≺∼Lmob). The located barbed bisimulation is strictly finer
than the barbed bisimulation:

1. ∼mob�∼Lmob ⇔ ∀M,N , if M ∼Lmob N then M ∼mob N ;
2. ∼Lmob 6�∼mob ⇔ ∃M,N , s.t. if M ∼mob N then M 6∼Lmob N .

Proof (Sketch).

1. The located observer (i.e., the located barb) can distinguish in both mem-
brane configurations the same object a placed inside the same membrane
m facilitating a movement, and so the located barb implies the simple barb
(M ↓x(a)@m implies M ↓x(a)).

2. We give the following counterexample: Take two membrane configurations M
and N , and an object a ∈ Oexo s.t. M = 〈l; (a, ta)]u′t〉 and N = 〈k; (a, ta)]
u′t〉 with l 6= k. Both M ↓exo(a) and N ↓exo(a) hold, and thus the two mem-
brane configurations are barbed bisimilar: M ∼mob N . However M ↓exo(a)@l

and N ↓exo(a)@k also hold, and l 6= k; therefore M 6∼Lmob N . ut

The bisimulation ∼Dmob is defined similarly with the bisimulation ∼mob, by
using the barb predicate ↓tax(a). It relates membrane configurations with the same

objects that execute the same movements and have the same delays.

37

Proposition 2 (∼mob≺∼Dmob). The delayed barbed bisimulation is strictly finer
than the barbed bisimulation:

1. ∼mob�∼Dmob ⇔ ∀M,N , if M ∼Dmob N then M ∼mob N ;
2. ∼Dmob 6�∼mob ⇔ ∃M,N , s.t. if M ∼mob N then M 6∼Dmob N .

The bisimulation ∼DLmob is defined similarly with the bisimulation ∼Dmob,
by using the barb predicate ↓tax(a)@m. It relates membrane configurations with the

same objects located in the same membranes that execute the same movements
and have the same delays.

Proposition 3 (∼Lmob≺∼DLmob). The delayed located barbed bisimulation is
strictly finer than the located barbed bisimulation:

1. ∼Lmob�∼DLmob ⇔ ∀M,N , if M ∼DLmob N then M ∼Lmob N ;
2. ∼DLmob 6�∼Lmob ⇔ ∃M,N , s.t. if M ∼Lmob N then M 6∼DLmob N .

The four barbed bisimulations form a lattice in which a directed edge means
“is strictly finer”: ∼DLmob

∼Dmob ∼Lmob

∼mob

4 Conclusion

A small difference in the behaviour of a biological system could lead to a disease.
Such a difference could appear because of the involved elements, their location,
their actions and timing. The behavioural equivalences introduced in this paper
could make the distinction between “normal” and “abnormal” behaviours, em-
phasizing also the elements by which behaviours differ. During the presentation,
some biological examples will illustrate the use of these bisimulations.

As future work, we are interested in theoretical investigation of other be-
havioural equivalences and their applicability to Systems Biology. Other be-
havioural equivalences (other than bisimulations) can also be considered: trace
equivalences, barbed congruences and testing equivalences.

References

1. Aman, B., and Ciobanu, G. 2009. Turing Completeness Using Three Mobile Mem-
branes. Lecture Notes in Computer Science 5715, 42–55.

2. Aman, B., and Ciobanu, G. 2009. Simple, Enhanced and Mutual Mobile Mem-
branes. Transactions on Computational Systems Biology XI 5750, 26–44.

3. Ciobanu, G., Păun, Gh., and Pérez-Jiménez, M.J., eds. 2006. Applications of
Membrane Computing. Springer.

4. Krishna, S.N., and Păun, Gh. 2005. P Systems with Mobile Membranes. Natural
Computing 4, 255–274.

5. Milner, R., and Sangiorgi, D. 1992. Barbed Bisimulation. Lecture Notes in Com-
puter Science 623, 685–695.

6. Păun, Gh., Rozenberg, G., and Salomaa, A., eds. 2010. The Oxford Handbook of
Membrane Computing. Oxford University Press.

38

Global Types for Dynamic Checking of Protocol
Conformance of Multi-Agent Systems

(Extended Abstract)

Davide Ancona, Matteo Barbieri, and Viviana Mascardi

DIBRIS, University of Genova, Italy
email: davide@disi.unige.it, matteo.barbieri@oniriclabs.com,

mascardi@disi.unige.it

1 Introduction

Multi-agent systems (MASs) have been proved to be an industrial-strength tech-
nology for integrating and coordinating heterogeneous systems. However, due to
their intrinsically distributed nature, testing MASs is a difficult task. In recent
work [1] we have tackled the problem of run-time verification of the conformance
of a MAS implementation to a specified protocol by exploiting global types on
top of the Jason agent oriented programming language [2].

Global types [3,6,4] are a behavioral type and process algebra approach to the
problem of specifying and verifying multiparty interactions between distributed
components.

Our notion of global type closely resembles that of Castagna, Dezani, and
Padovani, [4] except for two main differences: our types are interpreted coinduc-
tively, rather than inductively, hence they are possibly infinite sets of possibly
infinite sequences of interactions between a fixed set of participants; in this way,
protocols that must not terminate can be specified. Furthermore, we use global
types for dynamic, rather than static, checking of multiparty interactions; errors
can only be detected at run-time, but checking is simpler and more flexible, and
no notion of projection and session type has to be introduced.

Global types can be naturally represented as cyclic Prolog terms (that is,
regular terms), and their interpretation can be given by a transition function,
that can be compactly defined by a Prolog predicate. With such a predicate,
a Jason monitor agent can be automatically implemented to dynamically check
that the message exchange between the agents of a system conforms to a specified
protocol.

In this paper we continue our research in two directions: on the one hand, we
investigate the theoretical foundations of our framework; on the other, we extend
it by introducing a concatenation operator that allows a significant enhancement
of the expressive power of our global types. As significant examples, we show
how two non trivial protocols can be compactly represented in our framework:
a ping-pong protocol, and an alternating bit protocol, in the version proposed
by Deniélou and Yoshida [5]. Both protocols cannot be specified easily (if at all)
by other global type frameworks, while in our approach they can be expressed

39

by two deterministic types (in a sense made precise in the sequel) that can be
effectively employed for dynamic checking of the conformance to the protocol.

2 Global type interpretation

A global type τ represents a set of possibly infinite sequences of sending actions,
and is defined on top of the following type constructors:

– λ (empty sequence), representing the singleton set {ε} containing the empty
sequence ε.

– a:τ (seq), representing the set of all sequences obtained by adding the sending
action a at the beginning of any sequence in τ .

– τ1 + τ2 (choice), representing the union of the sequences of τ1 and τ2.
– τ1|τ2 (fork), representing the set obtained by shuffling the sequences in τ1

with the sequences in τ2 .
– τ1 · τ2 (concat), representing the set of sequences obtained by concatenating

any sequence of τ1 with any sequence of τ2.

As an example, (((a1:λ)|(a2:λ)) + ((a3:λ)|(a4:λ))) · ((a5:a6:λ)|(a7:λ)) denotes the
set of message sequences
{
a1a2a5a6a7, a1a2a5a7a6, a1a2a7a5a6, a2a1a5a6a7, a2a1a5a7a6, a2a1a7a5a6,
a3a4a5a6a7, a3a4a5a7a6, a3a4a7a5a6, a4a3a5a6a7, a4a3a5a7a6, a4a3a7a5a6

}

Global types are regular terms, that is, can be cyclic: more abstractly, they are
finitely branching trees (where nodes are type constructors) whose depth can
be infinite, but that can only have a finite set of subtrees. A regular term can
be represented by a finite set of syntactic equations, as happens, for instance,
in Jason and in most modern Prolog implementations. For instance, the two
equations T1 = (λ+ (a1:T1)) · T2, and T2 = (λ+ (a2:T2)) represent the following
infinite, but regular, global types (λ+(a1:(λ+(a1: . . .))))·(λ+(a2:(λ+(a2: . . .))))
and (λ+ (a2:(λ+ (a2: . . .)))), respectively.

To ensure termination of dynamic checking of protocol conformance, we only
consider contractive (or guarded) types.

Definition 1. A global type τ is contractive if it does not contain paths whose
nodes can only be constructors in {+, |, ·} (such paths are necessarily infinite).

The type represented by the equation T1 = (λ+(a2:T1)) is contractive: its infinite
path contains infinite occurrences of +, but also of the : constructor; conversely,
the type represented by the equation T2 = (λ + ((T2|T2) + (T2 · T2))) is not
contractive. Trivially, every finite type (that is, non cyclic) is contractive.

The interpretation of a global type depends on the notion of transition, a
total function δ:T × A → Pfin(T), where T and A denote the set of contractive
global types and of sending actions, respectively. As it is customary, we write
τ1

a→ τ2 to mean τ2 ∈ δ(τ1, a). Figure 1 (in the Appendix) defines the inductive
rules for the transition function.

The auxiliary function ε, inductively defined in Figure 2 (in the Appendix),
specifies the global types whose interpretation is equivalent to λ.

40

Proposition 1. Let τ be a contractive type. Then τ
a→ τ ′ for some a and τ ′ if

and only if ε(τ) does not hold.

Note that the proposition above does not hold if we drop the hypothesis requiring
τ to be contractive; for instance, if τ is defined by T = T + T , then neither ε(τ)

holds, nor there exist a, τ ′ s.t. τ
a→ τ ′.

Proposition 2. If τ is contractive and τ
a→ τ ′ for some a, then τ ′ is contractive

as well.

The two propositions above ensures termination when the rules defined in
Figures 1 and 2 are turned into an algorithm (implemented, for instance, in
Prolog clauses, as done for Jason [1]).

Definition 2. Let τ0 be a contractive type. A run ρ for τ0 is a sequence τ0
a0→

τ1
a1→ . . .

an−1→ τn
an→ τn+1

an+1→ . . . such that

– either the sequence is infinite, or there exists k such that ε(τk);

– for all τi, ai, and τi+1 in the sequence, τi
ai→ τi+1 holds.

We denote by α(ρ) the possibly infinite sequence of sending actions a0a1 . . . an . . .
contained in ρ.

The interpretation Jτ0K of τ0 is the set {α(ρ) | ρ is a run for τ0 } if τ0 admits
at least one run, {ε} otherwise.

Note that, differently from other approaches [4], global types are interpreted
coinductively: for instance, the global type defined by T = a:T denotes the set
{aω} (that is, the singleton set containing the infinite sequence of sending action
a), and not the empty set. Furthermore, whereas global types are regular trees,
in general their interpretation is not a regular language, since it may contain
strings of infinite length.

Finally, we introduce the notion of deterministic global type, which ensures
that dynamic checking can be performed efficiently without backtracking.

Definition 3. A contractive global type τ is deterministic if for any possible run

ρ of τ and any possible τ ′ in ρ, if τ ′
a→ τ ′′, τ ′

a′→ τ ′′′, and a = a′, then τ ′′ = τ ′′′.

3 Examples

In this section we provide two examples to show the expressive power of our
formalism.

3.1 Ping-pong Protocol

This protocol requires that first Alice sends n (with n ≥ 1, but also possibly
infinite) consecutive ping messages to Bob, and then Bob replies with exactly

41

n pong messages. The conversation continues forever in this way, but at each
iteration Alice is allowed to change the number of sent ping messages.

For simplicity we encode with ping and pong the only two possible sending
actions; then, the protocol can be specified by the following contractive and
deterministic global type (defined by the variable Forever):

Forever = PingPong · Forever
PingPong = ping :((pong :λ) + ((PingPong) · (pong :λ)))

3.2 Alternating Bit Protocol

We consider the Alternating Bit protocol, in the version defined by Deniélou and
Yoshida [5]. Four different sending actions may occur: Alice sends msg1 to Bob
(sending action msg1), Alice sends msg2 to Bob (sending action msg2), Bob sends
ack1 to Alice (sending action ack1), Bob sends ack2 to Alice (sending action
ack2). Also in this case the protocol is an infinite iteration, but the following
constraints have to be satisfied for all occurrences of the sending actions:

– The n-th occurrence of msg1 must precede the n-th occurrence of msg2 .
– The n-th occurrence of msg1 must precede the n-th occurrence of ack1 ,

which, in turn, must precede the (n+ 1)-th occurrence of msg1 .
– The n-th occurrence of msg2 must precede the n-th occurrence of ack2 ,

which, in turn, must precede the (n+ 1)-th occurrence of msg2 .

We first show a non deterministic contractive type specifying such a protocol
(defined by the variable AltBit1).

AltBit1 = msg1 :M2

AltBit2 = msg2 :M1

M1 = (((msg1 :λ)|(ack2 :λ)) ·M2) + (((msg1 :ack1 :λ)|(ack2 :λ)) ·AltBit2)
M2 = (((msg2 :λ)|(ack1 :λ)) ·M1) + (((msg2 :ack2 :λ)|(ack1 :λ)) ·AltBit1)

Since the type is not deterministic, it would require backtracking to perform
the dynamic checking of the protocol. The corresponding minimal deterministic
type (defined by the variable AltBit1) is the following:

AltBit1 = msg1 :M2

AltBit2 = msg2 : M1

M1 = (msg1 : A2) + (ack2 : AltBit1)
A1 = (ack1 : M1) + (ack2 : ack1 : AltBit1)
M2 = (msg2 : A1) + (ack1 : AltBit2)
A2 = (ack2 : M2) + (ack1 : ack2 : AltBit2)

References

1. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic Generation of Self-
Monitoring MASs from Multiparty Global Session Types in Jason. In Declarative
Agent Languages and Technologies (DALT 2012). Workshop Notes., pages 1–17,
2012.

42

2. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, 2007.

3. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP’07 (part of ETAPS 2007), volume 4421 of
LNCS, pages 2–17. Springer, 2007.

4. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party session. Logical Methods in Computer Science, 8(1), 2012.

5. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP’12 (part of ETAPS 2012), LNCS. Springer, 2012.

6. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
POPL 2008, pages 273–284. ACM, 2008.

A Appendix

(seq)
a:τ

a→ τ
(choice-l)

τ1
a→ τ ′1

τ1 + τ2
a→ τ ′1

(choice-r)
τ2

a→ τ ′2

τ1 + τ2
a→ τ ′2

(fork-l)
τ1

a→ τ ′1

τ1|τ2 a→ τ ′1|τ2
(fork-r)

τ2
a→ τ ′2

τ1|τ2 a→ τ1|τ ′2

(cat-l)
τ1

a→ τ ′1

τ1 · τ2 a→ τ ′1 · τ2
(cat-r)

τ2
a→ τ ′2

τ1 · τ2 a→ τ ′2
ε(τ1)

Fig. 1. Rules defining the transition function

(ε-seq)
ε(λ)

(ε-choice)
ε(τ1) ε(τ2)

ε(τ1 + τ2)
(ε-fork)

ε(τ1) ε(τ2)

ε(τ1|τ2)
(ε-cat)

ε(τ1) ε(τ2)

ε(τ1 · τ2)

Fig. 2. Rules defining global types equivalent to λ

43

Circular causality in event structures

Massimo Bartoletti1, Tiziana Cimoli1, G. Michele Pinna1, and Roberto Zunino2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 DISI, Università di Trento and COSBI, Italy

Abstract. We propose a model of events with circular causality, in the
form of a conservative extension of Winskel’s event structures. We show
a correspondence between the configurations in our event structures, and
the proofs of a fragment of Propositional Contract Logic.

1 Introduction

Circular reasoning often appears in the compositional modelling and verification
of concurrent systems [1, 2, 6, 7]. Circularity is also a common situation when
reasoning about contracts [4]. A task may depend on others which have already
been executed (dependencies in the past), but also on behalf that some other
tasks will be performed in the future. Circularity arises when two or more tasks
mutually rely on the guarantees provided by each other (circular dependencies).

Event structures (ES) are one of the classical model for concurrency, since [8].
Notwithstanding the variety of ingredients appeared in the literature, ES are
at least equipped with a relation (usually written `) modelling causality, and
another one modeling conflicts (or consistency). Extensions to ES often use
other relations to model other kind of dependencies, e.g. or-causality [3]. ES can
provide a basic semantic model for assume/guarantee rules, by interpreting the
enabling b ` a as: “I will do a after you have done b”.

However, circularity is usually prohibited in ES, either at the syntactic level,
like in Winskel’s prime event structures, or at the semantic level, like in Boudol’s
flow event structures [5]. Indeed, the classical notion of causality among events
only captures dependencies in the past, but not of the other kind. For instance,
in the ES with enablings b ` a and a ` b, none of the events a and b is reachable,
because of the circularity of the constraints.

We propose an extension of Winskel’s event structures with a new circular
causality relation (
). The ES prescribing a
 b (intuitively, “I will do a if you
promise to do b”) together with the other prescription b
 a has a configuration
where both a and b have happened, despite of the circular dependencies. The con-
figurations of these new ES do still enjoy the finiteness and finite-completeness
properties of classical ES, thought they are not coincidence-free, which is correct
from our point of view because of the presence of circular dependencies.

Our main technical result is an encoding of ES with circular causality into a
fragment of Propositional Contract Logic PCL [4], through which we show that
the problem of deciding if a set of events is a configuration can be reduced to
provability in the logic (which is shown in [4] to be decidable).

44

2 Event structures with circular causality

In Def. 1 below we present our extension to Winskel’s ES [8], to which we refer for
the details about ES. We assume an irreflexive and symmetric conflict relation
on events, and for a set of events X, we define the predicate CF (X) as follows:
CF (X) , (∀e, e′ ∈ X : ¬(e#e′)).

Definition 1. An event structure with circular causality (CES) is a quadruple
E = (E,#,`,
) where: (i) E is a set of events, (ii) # ⊆ E×E is an irreflexive
and symmetric relation, called conflict relation, (iii) ` ⊆ ℘fin(E) × E is the
enabling relation, (iv)
 ⊆ ℘fin(E) × E is the circular enabling relation. The
relations ` and
 are saturated, i.e. for all X,Y ⊆fin E and for ◦ ∈ {`,
},
X ◦ e ∧ X ⊆ Y ∧ CF (Y) =⇒ Y ◦ e.

A configuration C is a “snapshot” of the behaviour of the system modeled
by an ES, where for each event e ∈ C it is possible to find a finite justification,
i.e. a sequence of events containing all the causes of e. We refine the notion
in [8] to deal with circular causality. Intuitively, for all events ei in the sequence
〈e0 . . . en〉, either ei is `-enabled by its predecessors, or it is
-enabled by the
whole sequence. Note that, differently from other event-based models, if C is a
configuration, not necessarily a subset of C is a configuration as well (see e.g., E1

in Fig. 1). This makes it difficult to reason compositionally about configurations,
and this is why the notion in Def. 2 below is a little more general than what
suggested by our intuition. In an X-configuration C, the set C can contain an
event e even in the absence of a justification of e through a standard/circular
enabling — provided that e belongs to X. This allows, given an X-configuration,
to add/remove any event and obtain an Y -configuration, possibly with Y 6= X.

Definition 2 (Configuration). Let E = (E,#,`,
) be a CES. For all C,X ⊆
E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃e0, . . . , en ∈ C. e ∈ {e0, . . . , en} ∧
∀i ≤ n. (ei ∈ X ∨ {e0, . . . , ei−1} ` ei ∨ {e0, . . . , en}
 ei)

The set of all X-configurations of E is denoted by FE(X), or just FE when X = ∅.

Example 1. Consider the four CES in Fig. 1.

– E0 has enablings ∅ ` a, ∅
 b, and conflict a#b. By Def. 2 we have
∅, {a}, {b} ∈ FE0

, but {a, b} 6∈ FE0
.

– E1 has enablings {a} ` b and {b}
 a. Here ∅, {a, b} ∈ FE1
, {b} ∈ FE1

({b})
and {a} ∈ FE1

({a}), while neither {a} nor {b} belong to FE1
(∅).

– E2 has enablings {a, b} ` c, {c}
 a, and {c}
 b. The only non-empty
configuration of E2 is {a, b, c}.

– E3 has enablings {a, b}
 c, {a, b}
 d, {c} ` a, and {d} ` b. We have that
{a, b, c, d} ∈ FE3

. Note that, were one (or both) of the
 turned into a `,
then the only ∅-configuration would have been the empty one.

45

a b

E0

a b

E1

c

b

a

E2

c

db

a

E3

Fig. 1. CES are depicted as directed hypergraphs, where nodes stand for events. An
hyperedge from a set of nodes X to node e denotes an enabling X ◦ e, where ◦ = ` if
the edge has a single arrow, while ◦ =
 if the edge has a double arrow. A conflict a#b
is represented by a dotted line between a and b.

Let E = (E,#,`,
) be a CES. The following properties hold.

Property 1. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′): (a) C ∈ F(C); (b)
X ⊆ Y =⇒ F(X) ⊆ F(Y); (c) C ∈ F(X) ∧ C ′ ∈ F(X) =⇒ C ∪ C ′ ∈ F(X).

For A ⊆ F(X), with A ↑ we indicate that there exists C ′ ∈ F(X) such that
for all C ∈ A, C ⊆ C ′. We say that A is finitely compatible, and write A ↑fin , iff
∀A0 ⊆fin A. A0 ↑.

Property 2 (Finite-completeness). A ⊆ FE(X) ∧ A ↑fin =⇒ ⋃
A ∈ FE(X).

Property 3 (Finiteness). e ∈ C ∈ F(X) =⇒ ∃C0 ∈ F(X). e ∈ C0 ∧ C0 ⊆fin C.

Note that CES do not enjoy coincidence-freeness, i.e., it is not always true that:

∀C ∈ F. ∀e, e′ ∈ C.
(
e 6= e′ =⇒ (∃C ′ ∈ F. C ′ ⊆ C ∧ (e ∈ C ′ ⇐⇒ e′ 6∈ C ′)

)

A counterexample to coincidence-freeness is E1 in Fig. 1, where {a, b} ∈ FE1
,

but there exists no configuration including only a or b. Indeed, the absence of
coincidence-freeness is a peculiar aspect of circularity: if two events are circularly
dependent, then each configuration that contains one of them must contain both.

3 Relation with logics

We define an encoding of (finite) CES into Propositional Contract Logic
(PCL, [4]), an extension of intuitionistic logic which allows for circular reason-
ing through a “contractual implication” connective, written�. The Hilbert-style
axiomatisation of PCL extend that of IPC with the following axioms:

>� > (φ� φ)→ φ (φ′ → φ)→ (φ� ψ)→ (ψ → ψ′)→ (φ′ � ψ′)

In [4] a proof system is given which enjoys cut elimination and the subformula
property; these imply the decidability of the entailment relation `PCL.

The following property relates CES to PCL. Items (a), (b) and (c) are the
CES counterpart, respectively, of PCL Gentzen rules [Cut], [→L] and [Fix].

Property 4. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′):

46

(a) C ∈ F(X) ∧ C ′ ∈ F(X ∪ C) =⇒ C ∪ C ′ ∈ F(X)
(b) C ∈ F(X) ∧ C ′ ∈ F(X ∪ Y) ∧ C ` Y =⇒ C ∪ C ′ ∈ F(X)
(c) C ∈ F(X ∪ C ′) ∧ C ′ ∈ F(X ∪ Y) ∧ C
 Y =⇒ C ∪ C ′ ∈ F(X)

In Def. 3 we show a translation from CES into PCL formulae. In particular,
our mapping is a bijection into the fragment of PCL which comprises atoms,
conjunctions, and non-nested (standard/contractual) implications. For an event
structure E = 〈E,#,`,
〉, we denote with !E the set of events {!e | e ∈ E},
and we assume !E disjoint from E. For each event in e ∈ E ∪ !E, we assume an
atom e in the logic. For a set X ⊆ E, we write !X for the formula

∧
e∈X !e.

Definition 3. Let E = 〈E,#,`,
〉 be a finite CES. The mapping [·] from E

into PCL formulae is defined as follows:

[(Xi ◦ ei)i] =
∧

i

[Xi ◦ ei] [a # b] = (!a ∧ !b)→ ⊥

[X ◦ e] =
(
!e ∧ X ∧ !X

)
[◦] e where [◦] =

{
→ if ◦ = `
� if ◦ =

Theorem 1. Let E be a finite CES. Then, for all C ⊆ E:

C ∈ FE(X) ⇐⇒ [E], !C, X `PCL C and [E], !C 6`PCL ⊥
Example 2. Consider the CES E2 from Fig. 1. We have that:

[E2] =
(
(!c ∧ !a ∧ !b ∧ a ∧ b)→ c

)
∧
(
(!a ∧ !c ∧ c)� a

)
∧
(
(!b ∧ !c ∧ c)� b

)

Let C = {a, b, c}. We have that C ∈ FE2
, and [E2], !C `PCL C. Note that,

were the !-ed atoms omitted in the premises of → / �, then we would have,
e.g., [E2], !a, !c `PCL a∧ c, from which by Theorem 1 we would have incorrectly
deduced that {a, c} ∈ FE2

.

Acknowledgments. Work partially supported by Aut. Region of Sardinia under
grants L.R.7/2007 CRP2-120 (TESLA), CRP-17285 (TRICS) and P.I.A. 2010
Project “Social Glue”.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 15(1), 1993.

2. M. Abadi and G. D. Plotkin. A logical view of composition. Theoretical Computer
Science, 114(1), 1993.

3. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures, and processes. Inf. Comput., 171(1):1–49, 2001.

4. M. Bartoletti and R. Zunino. A calculus of contracting processes. In LICS, 2010.
5. G. Boudol. Flow event structures and flow nets. In Semantics of Systems of Con-

current Processes, 1990.
6. P. Maier. Compositional circular assume-guarantee rules cannot be sound and com-

plete. In FoSSaCS, 2003.
7. M. Viswanathan and R. Viswanathan. Foundations for circular compositional rea-

soning. In ICALP, 2001.
8. G. Winskel. Event structures. In Advances in Petri Nets, pages 325–392, 1986.

47

Service Interaction Contracts as Security Policies

Davide Basile

Dipartimento di Informatica, Università di Pisa, Italy
basile@di.unipi.it

http://www.di.unipi.it/~basile/

Abstract. We outline a methodology to check the compliance of ser-
vice orchestration with respect to service contracts. The contract of a
service is expressed by a finite state automaton, while the traces of the or-
chestration form a context-free language. A contract asserts the security
policy controlling resource accesses, including accesses to the communi-
cation channels, so making manifest also the client-service interactions.
The key idea of the methodology is controlling both access control and
compliance by an appropriate model-checking technique. Our approach
naturally deals with multi-party contracts.

Keywords: service contracts, compliance, model checking usages

1 Introduction

In Service-Oriented Computing (SOC), applications are built by combining dif-
ferent distributed components, called services. Standard communication proto-
cols are used for the interaction between the parties. Service composition depends
on which information about the services is made public. Security issues can make
more complex service composition, since a service can impose constraints on the
interactions it can hold. Also, the descriptions of services lack semantic infor-
mation. Behavioral contracts have been introduced to describe the external ob-
servable behavior of a service, and can be used for guaranteeing progress. This
property ensures that the whole system will never get stuck, i.e. all the compo-
nents are able to successfully terminate their tasks. We consider two different
paradigms for describing contracts. The contracts of Castagna et al. [3, 4] take
the form of CCS processes and permit to describe if the interaction between two
parties terminates or gets stuck, and when a service can be replaced with a more
general one. Instead Bartoletti et al. [1, 2] introduce a core calculus for services
that extends the λ-calculus with primitives for composing services in a call-by-
contract fashion under security properties. They develop a static technique for
extracting the abstract behaviour of a service (called History Expression) that
must obey the security policies. An orchestration machinery constructs a plan,
i.e. a binding between requests and services guaranteeing that the security prop-
erties are always satisfied.
We extends History Expressions to include channel communications and inter-
nal/external choice for combining the notions of security access and progress of

48

interactions, so merging and enriching the above surveyed approaches. We prove
that compliance between client and server is a safety property. The main nov-
elty of our approach lies in exploiting standard techniques of model checking for
controlling compliance of behavioural contracts. Also differently from [1–3] we
manage both multi-party contracts and sessions. Due to lack of space, we cannot
compare in more detail the vaste existing literature in this field, and refer the
interested reader to [6].

2 Programming Model and Verification

History Expressions (HE) are a suitable process calculus through which we
abstractly describe services. Beside the standard operations of process calculi,
namely I/O operations, prefixing, concatenation, guarded (tail) recursion, a His-
tory Expression H contain access events α, and two non-deterministic choice op-
erators. The external choice

∑
i∈I ai.Hi proceeds according to a value received on

channel ai from the external environment; while internal choice
⊕

i∈I ai.Hi de-
scribes a service that internally decides whether to continue with one of the sum-
mands ai.Hi. Additionally, HE have the framing ϕLHM specifying that the policy
ϕ must be enforced in H. A policy is an FSA that recognizes strings of access
events. An example of safety policy ϕ is “never perform write actions(αwrite) af-
ter read actions(αread)”. A trace that violates this policy is αreadαwrite. Finally,
HE describe the opening and closing of a session by the expression openr,ϕHcloser,
where r represents the unique identifier of the request (i.e. a point in the ab-
stract syntax tree of H) and ϕ is the policy that the responding service must
obey. Inside the session, two services can synchronize on I/O actions. Two ser-
vices are compliant if for every output action the other party is ready to perform
the corresponding input action. Every services is published at a location `. An
orchestrator statically creates a plan π which is a binding between the request r
and the location of the service choosen for opening the session. Only two services
are involved in a session. Nested sessions are possible, since a service involved in
a session can open a new session with another service. A plan π is valid if the
two services are compliant and the server does not violates the policy ϕ. Finally
a network N is the parallel composition of different services and sessions.
The operational semantic is defined by a transition system. The configurations
of a network have the form R � N , where R is a set of services and N is the
active network, i.e. the active clients and services. The set R is partitioned into
two parts: (1){`i : Hi}?i∈1...k is the set of stand-by available services that can be
invoked with a openr,ϕ operation and (2){`i : Hi}!i∈1...k′ is the set of busy ser-
vices, which are involved in sessions. To help intuition, we work out the following
running example. Consider the services:

H1 = a · (open2,ϕ2
d.(e+ f) close2) · (b⊕ c) · d H2 = β · d.(e⊕ f) · α

H3 = a.g H4 = open1,ϕ1
a.(b+ c) close1 H5 = open3,ϕ3

a.g close3

We can see that H2 performs the access events α, β. Let ϕ2 say “never β after
α”, while the actual definitions of ϕ1 and ϕ3 is immaterial. By abuse of notation,

49

when it is clear from the context, we indentify a service with the location where
it is running. Let the initial configuration of the network be:

{`1 : H1, `2 : H2, `3 : H3}? ∪ {}! � `4 : H4‖`5 : H5

Assume that the orchestrator plan is of the form π =
⋃

i∈{1,2,3}(ri, `i). We can
see that all the services are compliant and `2 respects the policy ϕ2. Suppose
now that `4 fires the open1,ϕ1

operation, we have:

{`2 : H2, `3 : H3}? ∪ {`1 : H1}! � [`4 : a.(b+ c) close1, `1 : ϕ1LH1M]‖`5 : H5

Now `1 is engaged in the session with the service `4, because π(r1) = `1. The
service `1 is marked busy in R and its behaviour is checked against ϕ1. The
service `5 opens a new session, and the resulting configuration becames:

{`2 : H2}? ∪ {`1 : H1, `3 : H3}! � [`4 : . . . , `1 : . . .]‖[`5 : a.g close3, `3 : ϕ3LH3M]

There are two parallel sessions. The services `5 and `3 will synchronize on the
channels a and g so that `5 closes the session and terminates, restoring `3 to its
initial state as an available service. Then `1 and `4 synchronize on channel a:

{`2 : H2, `3 : H3}? ∪ {`1 : H1}! � [`4 : (b+ c) close1, `1 : open2,ϕ2
. . .]

The service in `3 turns back to available service. Now `1 opens a new session
with `2 while `4 is waiting:

{`3 : H3}? ∪ {`1 : H1, `2 : H2}! � [`4 : . . . , [`1 : . . . , `2 : ϕ2LH2M]]
This is a nested session: `1 and `2 synchronize, note that ϕ2 is respected. Even-
tually `1 closes the session:

{`3 : H3, `2 : H2}? ∪ {`1 : H1}! � [`4 : (b+ c) close1, `1 : (b⊕ c) · d]

Here `4 will receive the input on channel b or c and it will close the session. We
can see that `1 could receive another message on channel d, but since the session
is closed it gets back to its initial state. The final configuration is:

{`1 : H1, `2 : H2, `3 : H3}? ∪ {}! � ε

For generating a valid plan we perform three steps. The first two find the compli-
ant services for each request and check if the selected service respects the policy ϕ
imposed by the client. For checking compliance of a given client with a sub-term
of the form openr,ϕH1closer and an available service `2 : H2; we calculate a pro-
jection ofH1 andH2 on their communication actions; operationally we remove all
the policies ϕ, all the access events α and all the sub-terms openr′,ϕ′ . . . closer′

nested in H1 and H2. Then, we make the product automaton A of the resulting
transition systems. We only have finitely many states in A. We fully characterize
compliance of services by checking in each state that the client has not termi-
nated and for all the possible output actions that a service is ready to fire, the
other party is ready to perform the corresponding input action. We also check
that at least one of the two services can perform one output. It turns out that
compliance is an invariant property: a subset of the safety properties [5]. Now
H1 and H2 are compliant if and only if the language of the product automaton
A is empty: no final states exist in which the above condition do not hold. We
also have to check if the choosen service respects the policy ϕ. For doing so we

50

discard all the communication actions (possibly transforming ⊕ in +). Finally,
an important property is that a History Expression H is valid under a policy ϕ
if and only if JHK∩ JϕK = ∅, i.e. if and only if the languages JHK of the traces of
access events of H and JϕK of the offending traces of ϕ do not intersect. Since
JHK is context-free and JϕK is regular, and emptiness of a context-free language
is decidable, so is our problem. Indeed several algorithms and tools show this
approach feasible. The following example explains how to resolve the request
open2,ϕ2

occuring in H1 of our running example. The projection of H2 on his

communication actions give raise to the service d.(e⊕f). The product automaton
d.(e+ f)⊗ d.(e⊕ f) has three states: {〈d.(e+ f), d.(e⊕ f)〉, 〈e+ f, e⊕ f〉, 〈ε, ε〉}.
The set of final states is empty: no state satisfies the conditions described above.
Recall that ϕ2 says “never β after α”, the projection of H2 on the access events
give raise to the service β ·α, we have Jϕ2K = {Σ∗αΣ∗βΣ∗} and Jβ ·αK = {β ·α}
and the intersection is trivially the empty language, therefore the two services
are compliant and (r2, `2) ∈ π. Proceeding in this way, we generate the set of
compliant services for each request. Finally the third last step ensures that a
service never gets stuck while is waiting to opening a session. First we generate
a “locally”viable plan for each service. One of the compliant services for each
request is selected such that it will never be the case that two nested request
r1, r2 are resolved by the same service. For example, the following network has
no “locally”viable plan:

{`2 : a.(b+ c+ d+ e)}? � `1 : open1,−a.open2,−a.(b⊕ c)close2(b⊕ c⊕ d)close1
Indeed the service at `2 is compliant with both the request r1 and r2. The plan
π = {(r1, `2), (r2, `2)} is not locally viable for `1: the service at `2 will never be
available to open the session r2 since it is still involved in r1.
The algorithm for generating a locally viable plan for a service at every iteration
picks the outermost open/close subterm and selects one of the services compliant
with that request. Then it removes from the selected service the set of compli-
ant services of the nested open/close subterms. All the locally viable plans are
merged into a global plan. The tecnique we adopt consists in building the state
graph of the network and in checking that there are no cycles where a service is
able to open a session and it will never do it. Finally we plan to implementing
the algorithms outlined above in one of the existing model-checker.

References

1. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, Roberto Zunino: Call-
by-Contract for Service Discovery, Orchestration and Recovery. LNCS: 232-261.

2. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari: Planning and verifying
service composition. Journal of Computer Security 17(5): 799-837 (2009)

3. Giuseppe Castagna, Niel Gesbert, Luca Padovani: A Theory of Contracts for Web
Services. ACM TOPLAS, 31(5), 2009.

4. Giuseppe Castagna and Luca Padovani: Contracts for mobile processes. LNCS:
211-228 2009.

5. C. Baier and J.-P. Katoen: Principles of Model Checking. MIT Press, 2008.
6. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, Roberto Zunino: Local

policies for resource usage analysis. (TOPLAS) 31(6) (2009).

51

Checking Satisfiability of CLTL without
Automata

Marcello M. Bersani, Achille Frigeri

Politecnico di Milano bersani@elet.polimi.it,achille.frigeri@polimi.it

1 Introduction

Finite-state system verification has attained great successes, both using automata-
based and logic-based techniques. Examples of the former are the so-called
explicit-state model checkers [1] and symbolic model checkers [2]. However, some
of the best results have been obtained by logic-based techniques, such as Bounded
Model Checking (BMC) [3], a fully automated (although potentially incomplete)
procedure. In BMC, a finite-state machine A (typically, a version of Büchi Au-
tomata) and a desired property P expressed in Propositional Linear Temporal
Logic (PLTL) are translated into a Boolean formula φ to be fed to a SAT solver.
The translation is made finite by bounding the number of time instants. How-
ever, infinite behaviors, which are crucial in proving, e.g., liveness properties,
are also considered by using the well-known property that a Büchi Automaton
accepts an infinite behavior if, and only if, it accepts an infinite periodic behav-
ior. Hence, chosen a bound k > 0, a Boolean formula φk is built, such that φk
is satisfiable if and only if there exists an infinite periodic behavior of the form
αβω, with |αβ| ≤ k, that is compatible with system A while violating property
P . This procedure allows counterexample detection, but it is not complete, since
the violations of property P requiring “longer” behaviors, i.e., of the form αβω

with |αβ| > k, are not detected. However, in many practical cases it is possible
to find bounds large enough for representing counterexamples, but small enough
so that the SAT solver can actually find them in a reasonable time.

Clearly, the BMC procedure can be used to check satisfiability of a PLTL
formula, without considering a finite state system A. This has practical applica-
tions, since a PLTL formula can represent both the system and the property to
be checked (see, e.g., [4], where the translation into Boolean formulae is made
more specific for dealing with satisfiability checking and metric temporal oper-
ators). We call this case Bounded Satisfiability Checking (BSC), which consists
in solving a so-called Bounded Satisfiability Problem: Given a PLTL formula P ,
and chosen a bound k > 0, define a Boolean formula φk such that φk is satisfiable
if, and only if, there exists an infinite periodic behavior of the form αβω, with
|αβ| ≤ k, that satisfies P .

The introduction of many extensions of temporal logic proposed in order to
express property of infinite-state systems, has lead to the study of CLTL(D),
a general framework extending the future-fragment of PLTL by allowing arith-
metic constraints belonging to a generic constraint system D. The resulting logics

52

are expressive and well-suited to define infinite-state systems and their proper-
ties, but, even for the bounded case, their satisfiability is typically undecidable
[5], since they can simulate general two-counter machines when D is powerful
enough (e.g., Difference Logic). However, there are some decidability results,
which allow in principle for some kind of automatic verification. Most notably,
satisfiability of CLTL(D) is decidable (in pSPACE) when D is the class of In-
teger Periodic Constraints (IPC∗) [6], or when it is the structure (D,<,=) with
D ∈ {N,Z,Q,R} [7]. In these cases, decidability is shown by using an automata-
based approach similar to the standard case for LTL, by reducing satisfiability
checking to emptiness verification of Büchi automata. Given a CLTL(D) formula
φ, with D as in the above cases, it is in fact possible to define an automaton Aφ
such that φ is satisfiable if, and only if, the language recognized by Aφ is not
empty. These results, although of great theoretical interest, are not well suited
for a direct implementation, since the involved constructions are very inefficient.

We extended [8] the above results to a more general logic, called CLTLB(D),
which is an extension of PLTLB (PLTL with Both future and past operators)
with arithmetic constraints in constraint system D, and consider a procedure
for satisfiability verification that does not rely on automata constructions. This
procedure is implemented in the Zot toolkit, verified by standard SMT-solvers,
such as z3 [9].

The idea of the procedure is to verify satisfiability by checking a finite num-
ber of k-satisfiability problems. Informally, k-satisfiability amounts to looking
for ultimately periodic symbolic models of the form αβω, i.e., such that prefix
αβ of length k admits a bounded arithmetic model (up to instant k). Although
the k-bounded problem is defined with respect to a bounded arithmetical model,
it provides a finite representation of infinite symbolic models by means of ulti-
mately periodic words. When CLTLB(D) has the property that its ultimately
periodic symbolic models, of the form αβω, always admit an arithmetic model,
then the k-satisfiability problem can be reduced to satisfiability of QF-EUD (the
theory of quantifier-free equality and uninterpreted functions combined with D).
In this case, k-satisfiability is equivalent to satisfiability over infinite models.

Symmetrically to standard LTL, where bounded model-checking and SAT-
solvers can be used as an alternative to automata-theoretic approaches to model-
checking, reducing satisfiability to k-satisfiability allows SMT-solvers to be used
in solving satisfiability for CLTLB(D) formulae, instead of checking emptiness of
a Büchi automaton. Moreover, when the length of all prefixes αβ to be tested is
bounded by some finite K, then the number of bounded problems to be solved is
also bounded. Therefore, we also proved that k-satisfiability is complete with re-
spect to the satisfiability problem, i.e., by checking at most K bounded problems
satisfiability of CLTLB(D) formulae can always be answered.

2 Bounded Satisfiability Problem

The k-satisfiability problem for CLTLB(D) formulae is defined in terms of the
existence of a so-called k-bounded arithmetical model σk, which provides a finite

53

representation of infinite symbolic models by means of ultimately periodic words.
This allows to prove that k-satisfiability is still representative of the satisfiability
problem. In fact, for some constraint systems, a bounded solution can be used to
build the infinite model σ for the formula from the k-bounded one σk and from
its symbolic model. We showed that a formula φ is satisfiable if, and only if, it is
k-satisfiable and its bounded solution σk can be used to derive its infinite model
σ. In case of negative answer to a k-bounded instance, we can not immediately
entail the unsatisfiability of the formula. However, we proved that for every
formula φ there exists an upper bound K, which can effectively be determined,
such that if φ is not k-satisfiable for all k in [1,K], then φ is unsatisfiable.

A bounded symbolic model is, informally, a finite representation of infi-
nite CLTLB(D) models over the alphabet of symbolic valuations SV (φ). We
restrict the analysis to ultimately periodic symbolic models, i.e., of the form
ρ = α(β)ω. The Bounded Satisfiability Problem (BSP) is defined with respect to
a k-bounded model σk (i.e., an assignment for variable in the first k-instants),
a finite sequence ρ′ (with |ρ′| = k + 1) of symbolic valuations and a k-bounded
satisfaction relation |=k defined as follows:

σk, 0 |=k ρ′ iff σk, i |= ρ′(i) for all 0 ≤ i ≤ k.

The k-satisfiability problem of formula φ is defined as follows:

Input A CLTLB(D) formula φ, a constant k ∈ N
Problem Is there an ultimately periodic sequence of symbolic valuations ρ =

α(β)ω (with |αβ| = k+1), such that ρ, 0 |= φ and which admits a k-bounded
model σk such that σk |=k ρ′, with ρ′ = αβ?

Since the length k is fixed, the procedure for determining the satisfiability of
CLTLB(D) formulae over bounded models is not complete: even if there is no
accepting run of automaton Aφ when ρ′ as above has length k, there may be
accepting runs for a larger ρ′.

Definition 1. Given a CLTLB(D) formula φ, its completeness threshold Kφ,
if it exists, is the smallest number such that φ is satisfiable if and only if φ is
Kφ-satisfiable.

Theorem 1. Let φ be a CLTLB(D) formula. If D is (D,<,=), then the com-
pleteness threshold exists and is less then |SV (φ)| · 2|φ|. If D is IPC∗, then the
completeness threshold exists and is less then 4|V |2|λ|2|SV (φ)| · 2|φ|, where λ is
an effectivly constant depending on the depth of φ.

3 Encoding for BSP without Automata

We proved that the BSP for a CLTLB(D) formula can be reduced to the satisfia-
bility of a quantifier-free formula in the theory EUF∪D (QF-EUD), where EUF
is the theory of Equality and Uninterpreted Functions, provided that D includes
a copy of N with the successor relation and that EUF∪D is consistent. The last

54

condition is easily verified in the case of the union of two consistent, disjoint,
stably infinite theories (as is the case for EUF and arithmetic). In [10] a similar
approach is described for the case of Integer Difference Logic (DL) constraints.
It is worth noting that standard LTL can be encoded by a formula in QF-EUD
with D = (N, <). In this case, the encoding is more succinct than the Boolean
one proposed in [11].

We denote the encoding of the BSP for φ with bound k by |φ|k. We proved
the main equivalence result which draws the connection between such encoding
and the k-satisfiability problem.

Theorem 2. Let φ ∈ CLTLB(D) with N definable in D together with the suc-
cessor relation, φ is k-satisfiable with respect to k ∈ N if, and only if, |φ|k is
satisfiable.

Proposition 1. Let φ ∈ CLTLB(D) with N definable in D together with the
successor relation, φ is k-satisfiable with respect to k ∈ N if, and only if, φ has
an ultimately periodic model αβω with |αβ| = k + 1.

References

1. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (may 1997) 279 –295

2. Clarke, E., McMillan, K., Campos, S., Hartonas-Garmhausen, V.: Symbolic model
checking. In: Computer Aided Verification. Volume 1102 of Lecture Notes in Com-
puter Science. (1996) 419–422

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 1579 of Lecture Notes in Computer Science. (1999) 193–207

4. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric
temporal logic specifications. ACM Transactions on Software Engineering and
Methodology (TOSEM) (2012) To appear.

5. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. Technical Report LSV-06-5, LSV (2006)

6. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. In: International Syposium on Temporal Representation and Reasoning
(TIME), IEEE Computer Society (2007) 94–104

7. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. In-
formation and Computation 205(3) (2007) 380–415

8. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P.:
Constraint LTL Satisfiability Checking without Automata. ACM Transactions on
Computational Logic (submitted)

9. Microsoft Research: Z3: An efficient SMT solver.
http://research.microsoft.com/en-us/um/redmond/projects/z3/ (2009)

10. Bersani, M.M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-based
verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In: IEEE International Conference on
Software Engineering and Formal Methods. (2010) 244–254

11. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5) (2006)

55

On the Complexity of Pure 2D Context-free
Grammars

Marcello M. Bersani, Achille Frigeri, Alessandra Cherubini

Politecnico di Milano
bersani@elet.polimi.it,{achille.frigeri,alessandra.cherubini}@polimi.it

1 Introduction

Picture languages generalize classical string languages to two-dimensional ar-
rays. Several approaches have been proposed during the years; consequently, a
general classification and a detailed comparison of the classes proposed turns
to be necessary. We studied in detail closure properties of (regular) pure 2D
context-free grammars (R)P2DCFG [1], and the complexity of the membership
problem [2].

2 Preliminaries

General definitions Let Σ be a finite alphabet. A two-dimensional array of
elements of Σ is a picture over Σ. The set of all pictures over Σ is denoted
by Σ++. For h, k ≥ 0, Σ(h,k) denotes the set of pictures of size (h, k), and
Σ∗∗ = Σ++∪λ, where λ is the empty picture. Conversely, if p ∈ Σ∗∗, we denote
by |p|row and |p|col, the number of rows and columns of p, respectively. The size
of p is the pair |p| = (|p|row, |p|col). As in the one-dimensional case, a picture
language is a subset of Σ∗∗. For 1 ≤ i ≤ |p|row, 1 ≤ j ≤ |p|col, the element of p
in the i-th row and j-th column is called a pixel and denoted by p(i, j).

Operations on picture languages Let Γ and Σ be two finite alphabets and
π : Γ → Σ a function between them, if p ∈ Γ (h,k), the projection of p by π
is the picture p′ ∈ Σ(h,k) such that p′(i, j) = π(p(i, j)), for all 1 ≤ i ≤ |p|row,
1 ≤ j ≤ |p|col. Projection naturally extends to languages. Row and column con-
catenations are partial operations on pictures denoted 	 and :, respectively. If
p, q ∈ Σ(h,∗) (resp. p, q ∈ Σ(∗,k)) p:q (resp. p	q) is the horizontal (resp. vertical)
juxtaposition of p and q. With pn: (resp. pn) is denoted the horizontal (resp.
vertical) juxtaposition of n copies of p; p+: (resp. p+) is the corresponding
closure. Concatenations also extend to languages.

Pure 2D Context-free Grammars Context free grammars which make use
of only terminal symbols (i.e., pure grammars) have been well investigated in
the theory of string languages. Pure 2D context-free grammars [3], unlike Matrix
grammars ([4,5]), admit rewriting any row/column of pictures with no priority of

56

columns and rows. Row/column sub-arrays of pictures are rewritten in parallel
by equal length strings and by using only terminal symbols.

Definition 1. A pure 2D context-free grammar (P2DCFG) is a 4-tuple G =
(Σ,P c, P r, S′) where:

1. Σ is a finite set of symbols;
2. P c = {ci | 1 ≤ i ≤ m} is the set of column rule tables, where a table ci is a

set of context-free rules of the form a→ α, a ∈ Σ, α ∈ Σ+ s.t. for any two
rules a→ α, b→ β in ci, |α| = |β| where |α| denotes the length of α.

3. P r = {ri | 1 ≤ i ≤ n} is the set of row rule tables, where a table ri is a set
of context-free rules of the form a → tα, a ∈ Σ, α ∈ Σ+ s.t. for any two
rules a→ tα, b→ tβ in ri, |α| = |β|.

4. S′ ⊆ Σ++ is a finite set of axioms.

For any two arrays p1, p2 ∈ Σ∗∗, p2 is derived from p1 in G, in symbols p1 ⇒ p2,
if p2 is obtained from p1 by either rewriting a column of p1 by applying to each
letter of the column a rule in a table ci ∈ P c, or rewriting a row of p1 by applying
to each letter of the row a rule in a table ri ∈ P r. The set of symbols occurring in
the column (resp. row) that will be rewritten by ci ∈ P c (resp. ri ∈ P r) must be
a subset of {a | a→ α ∈ ci} (resp. {a | a→ tα ∈ ri}). Otherwise, the derivation
can not be achieved because there are some symbols for which ci (resp. ri) does
not provide a rewriting rule. Derivation ⇒ is a binary relation over Σ∗∗ and its
reflexive and transitive closure is denoted by ∗⇒. The language L(G) generated
by the P2DCF grammar G is the set {p | S ∗⇒ p ∈ Σ++ for some S ∈ S′}.
The family of languages generated by some P2DCF grammar is denoted by
P2DCFL. It is worth noticing that all pictures derived at each step by applying
a rewriting rule from the set P c or P r are legal pictures. Since non-terminals are
not admitted by P2DCF grammars, each derivation consists of characters of Σ.
To augment the expressive power of P2DCF grammars, the sequence of rules to
be used can be led by a control language.

Definition 2. A pure 2D context-free grammar with regular control (RP2DCFG)
is a tuple Gr = (G,Γ, C) where:

1. G is a P2DCF grammar;
2. Γ is the control alphabet, actually the set of labels of the rule tables in P c∪P r;
3. C ⊆ Γ ∗ is the regular control associated to the grammar.

If p ∈ Σ∗∗ and S ∈ S′, p is derived from S in Gr by means of a control word
w = w1w2 . . . wn ∈ C, in symbols S ⇒w p, if p is obtained from S by applying the
column/row rules defined by w. The language L(G) generated by the RP2DCF
grammar Gr is the set of pictures {p | S ⇒w p ∈ Σ++ for some w ∈ C}.
The family of languages generated by some RP2DCF grammar is denoted by
RP2DCFL. The family P2DCFL is strictly included in RP2DCFL, indeed each
P2DCF language is a RP2DCF language with control C = Γ ∗. On the other
hand, the language of squares over the symbol a is not a P2DCF language
but can be generated by the RP2DCF grammar (G, {c, r}, (cr)∗) where G =

57

({a}, {c}, {r}, S) and S → a, c = {a→ aa}, r = {a→ t(aa)}. In order to refine
the given definition of this class of grammars, we consider RP2DCFG whose
alphabet is Σ = ΣT ∪ ΣC where ΣT is the alphabet of final symbol defining
the pictures, and ΣC is a set of auxiliary characters, or control symbols, which
are involved only in the process of derivation. Yet, control symbols can not be
considered as proper non-terminal symbols since they have to be rewritten by
means of derivations guided by the control language, so that no control symbols
appear in the final picture and the generating device can still be seen as a pure
grammar. We showed that the use of control symbols is needed to reach the full
expressiveness of RP2DCFG, i.e., there exist RP2DCF languages that can not
be defined without the use of control symbols.

3 Normal form and parsing complexity

Normal forms of generating grammars are useful tools to get in a easier way
properties of languages and make comparisons between different generating de-
vices. Normal forms, in general, force some constraints on the size and on the
alphabet of the strings/pictures occurring in the left and right parts of the pro-
ductions. Since the model we are considering is a pure grammar, and productions
in the row/column tables always rewrite a single character into the right part
that is a string (or the transpose of a string), the normal form we ask for has
to fix the length of the strings in the right part of each production: formally
a (R)P2DCFG is in normal form if all productions have the form a → α or
a → tβ with |α| = |β| = 2. Pure 2D context-free grammars do not have a
normal form. Indeed, the language L3(a) of pictures of size (hn, kn) (where
h, k are positive integers) on the alphabet {a} are generated by the P2DCFG
({a}, {c1}, {r1}, S), where c1 and r1 are, respectively, composed by the unique
rules a→ an, a→ t(an) and S is the square of a of size (n, n), but no P2DCFG
with column and row productions of length 2. However, we have the following.

Proposition 1. Each (R)P2DCF grammar is equivalent to a RP2DCFG in nor-
mal form.

Actually, a more general result holds: each pure 2D context-free grammar with
a control language belonging to a class of languages closed with respect to finite
substitutions admits a normal form.

Theorem 1. The general problem of the membership of a picture into a lan-
guage generated by a P2DCFG is NP-complete.

We proved the NP-hardness by providing a (polynomial-time) reduction of SAT
to the membership problem for a P2DCFL with an alphabet of at least 5 symbols.
So, the question concerning the parsing complexity for pure 2D grammars with
smaller alphabets is quite natural. We have the following results.

Theorem 2. The parsing of a language generated by (R)P2DCF grammars with
unary alphabet is in P.

58

On the other hand, the NP-completeness of the membership for RP2DCFL char-
acterizes all the languages with at least two symbols. The proof consists of a
reduction of the set-covering problem to the membership for RP2DCFG.

Theorem 3. The general problem of the membership of a picture to a language
generated by a RP2DCFG with (at least) two symbols is NP-complete.

4 Closure properties

In this section, we present some closure properties of the class of (R)P2DCFL.
Some of them are known from [3] but here we provide new results. First we
considered projections:
Proposition 2. Let G = (Σ,P c, P r, S) be a P2DCFG and let π be a projection
from the alphabet Σ to the alphabet ∆. Then π(L(G)) is a subset of the language
generated by a P2DCFG G such that π(L(G)) = L(G) ∩∆++.

Proposition 3. Let Greg = (G,Γ, C) with G = (Σ,P c, P r, S) be a RP2DCFG
and let π be a projection from the alphabet Σ to the alphabet ∆. Then π(L(G)) is
a subset of the language generated by a RP2DCFG Greg = (G,Γ ∪{cπ}, C{cπ}∗)
such that π(L(Greg)) = L(Greg) ∩∆++.

The two previous propositions show how projection may change the expressive-
ness of the class of languages of P2DCFG. A similar result is obtained also for
Tiling Systems which are the projection of Local languages. In [3] the authors
proved that P2DCFL are not closed under union and under row/column con-
catenation and proved that the closure under union can be retained when a
regular control language is added to the grammars. Yet, no results is provided
concerning the closure under intersection. We have the following:
Proposition 4. Let G1

r = (G1, Γ1, C1) and G2
r = (G2, Γ2, C2) be two RP2DCFG.

Then, the language L(G1
r) ∪ L(G2

r) is RP2DCFL.

Proposition 5. The family of P2DCFL is not closed under intersection.

The family of P2DCFL was shown not to be closed under row/colum concate-
nation in [3]. We conjecture that this holds also for the family of RP2DCFL.

References
1. Bersani, M.M., Frigeri, A., Cherubini, A.: On Some Classes of 2D Languages and

Their Relations. In: IWCIA. (2011) 222–234
2. Bersani, M.M., Frigeri, A., Cherubini, A.: Expressiveness and Complexity Of Reg-

ular Pure 2D Context-free Languages (RP2DCFL). International Journal of Com-
puter Mathematics (to appear)

3. Subramanian, K.G., Nagar, A.K., Geethalakshmi, M.: Pure 2D picture grammars
(P2DPG) and P2DPG with regular control. In: IWCIA. (2008) 330–341

4. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Computer Graphics and Image Processing 1 (1972) 284–307

5. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Information and Control 23(5) (1973) 447–470

59

A Secure Coordination of Agents with

Nonmonotonic Soft Concurrent Constraint

Programming⋆,⋆⋆

Stefano Bistarelli1,2 and Francesco Santini1,3

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
bista,francesco.santini@dmi.unipg.it

2 Istituto di Informatica e Telematica, IIT-CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
F.Santini@cwi.nl

Extended abstract. In the context of distributed/concurrent systems, the abil-
ity to coordinate the agents coupled with the possibility to control the actions
they perform is significantly important. The necessity of guaranteeing secu-
rity properties is rapidly arising: in an open and untrusted environment, an
attacker can threat the integrity and confidentiality properties of the exposed
data. The ingredient at the basis of our research is Nonmonotonic Soft Concurrent
Constraint Programming (NSCCP) [4]. The NSCCP language extends the classical
Soft Concurrent Constraint Programming (SCCP) language [3] with the possibil-
ity of relaxing (i.e. retracting or removing constraints) the store with a retract
action, which clearly improves the expressivity of the language [4]. However,
non-monotonicity raises further security concerns, since the store σ is a shared
and centralized resource accessed in a concurrent manner by multiple agents at
the same time: may an agent A relax a constraint c added to σ by the agent B?
Since in this case we are reasoning about soft constraints instead of crisp ones,
“how much” of c can agent A relax? Even if (S)CCP has been successfully used to
analyse security issues [1], the paradox is that security aspects linked to the lan-
guage itself have not been inspected yet. For these reasons, a constraint-based
language modeling the interactions among agents in an untrusted environment
needs to support security by providing some access control mechanisms with a
granularity at the level of the single constraints. Therefore, our intent is to equip
the core actions of the NSCCP language [4] with a formal system of rights on
the constraints and then study the execution of agents from this new point of
view. We take inspiration from the Access Control List (ACL) model [6], which
is one of the security concepts in the design of secure computing systems. An
ACL specifies which users or system processes are granted access to objects, as

⋆ Work carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship
Programme. This Programme is supported by the Marie Curie Co-funding of Regional,
National and International Programmes (COFUND) of the European Commission.

⋆⋆ Research partially supported by MIUR PRIN 20089M932N project: “Innovative and
multi-disciplinary approaches for constraint and preference reasoning”.

60

well as what operations are allowed on given objects. In this paper, when an
agent A1 adds a piece of information to the store, i.e., a constraint c, it specifies
also the confidentiality and integrity rights [9] on that constraint, for each agent
Ai participating to the protected computation. For instance, how much of c the
agent A3 may remove from the store (i.e. the retract rights) and how much of c
the agent A2 may query with an ask operation (i.e. the ask rights).

We use control mechanisms in order to guarantee some form of security
and privacy on the shared store of constraints. However, since we work on the
semiring-based formalism [3], our checks are focused on the quantitative, rather
than qualitative, point of view, differently from previous works on Linda [8, 5,
7]. In fact, our approach is able to set “how much” of the current store each
agent can retract or ask. Therefore, also the rights, together with the information
they are applied on (i.e., soft constraints) are soft, in the sense they may concern
“part” of the added information. In a crisp vision, if c1 is added to the store, it is
possible to prevent only the removal of the entire c1, but not part of it. When an
agent add a constraint to the store by performing a tell action, it also specifies the
rights that all the other agents have on that constraint. We define three kinds of
rights: the tell rights, stating how much the added constraint can be “worsened”
by the other agents, the ask rights, which specify how much of the constraint can
be “read” by each agent and the retract rights, describing how much of the added
constraint can be removed via a retract action. The tell and retract rights can be
classified as integrity rights [9], while the ask rights are classified as confidentiality
rights [9]. In Def. 1 we define the tell, ask and retract rights.

Definition 1 (Tell, Ask and Retract Rights). Let n be the number of agents partici-
pating to the concurrent computation. Tell rights. Each constraint ck added to the store
is associated with a vector Rt = 〈ct1

, ct2
, . . . ctn

〉. cti
represents the tell right imposed

on agent Ai. In particular, cti
represents how much the agent Ai can add (with a tell

operation) to the constraint ck, that is how much Ai can worsen ck. Ask rights. Each
constraint ck added to the store is associated with a vector Ra = 〈ca1

, ca2
, . . . can

〉. cai

represents the ask right imposed on agent Ai. In particular, cai
represents how much

of the added ck constraint can be read (with an ask operation in the common store) by
agent Ai. Retract rights. Each constraint ck added to the store is associated with a
vector Rr = 〈cr1

, cr2
, . . . crn

〉. cri
represents the retract rights imposed on agent Ai. In

particular, cri
represents how much of ck can be removed (with a retract operation) by

agent Ai.

We suppose that each agent knows the name (and, consequently, also the
number) of the other agents participating to the secure computation on the
shared store. This is a general premise for a secure computation, as for example
given in Operating Systems Primitives. Moreover, also in the other references
in literature an identifier is defined for each entity whose computation is con-
trolled [5]. Supposing to know the number of agents at the beginning of the
computation is a common practice in many security-related fields, as the exe-
cution of multiple threads on the same shared memory. We propose NSCCP as
a language to enforce a secure access over general shared resources, checking if

61

quantitative rights over them are respected, e.g. “Peter may not eat more than
10% of the birthday cake”. Moreover, we can suppose that the names of agents
are instead names of (security) classes each agent belongs to. The rights of each
class are then shared by all the included agents; in this way it is not necessary
to set the rights for each single agent, or even to know their number.

With an abuse of notation we define the composition operation of rights
as R′ = R ⊗ R̄, where R′ models the new rights in the computation state af-
ter the update, while R̄ represents the new rights that modify the state (pa-
rameter of the tell action in Fig. 1). R′ = R ⊗ R̄ is implemented with equa-
tions (1)∀i.R′t[i] = Rt[i] ⊗ R̄t[i], (2)∀i.R′a[i] = Ra[i] ⊗ R̄a[i] and (3)∀i.R′r[i] =
Rr[i] ⊗ R̄r[i] (i.e. respectively tell, ask and retract rights): for example, if we
have two agents A1 and A2, we use the Weighted semiring 〈R+,min,+,∞, 0〉
and R, R̄ are: R = (Rt = 〈x, 5̄, x + y〉,Ra = 〈y, x, 1̄〉,Rr = 〈x, z, 2̄〉) R̄ = (R̄t =
〈y, x, 3̄〉, R̄a = 〈1̄, 1̄, 1̄〉, R̄r = 〈1̄, x, 6̄〉) then theR′ composition of rights is given by
R′ = R ⊗ R̄ = (R′t = 〈x + y, x + 5̄, x + y + 3̄〉,R′a = 〈y, x, 1̄〉, R′r = 〈x, x + z, 8̄〉).
The Secure NSCCP Language. Given a soft constraint system [3], in Fig. 1 we
present the syntax of the secure NSCCP language [2] , which can be used in a
secure coordination of agents. In Fig. 1, P is the class of programs, F is the class
of sequences of procedure declarations (or clauses), A is the class of agents, c
ranges over constraints, X is a set of variables and Y is a tuple of variables.

PF F.A
FF p(Y) :: A | F.F
AF sec f ail | success | tell(c, R̄)֌ A | retract(c)֌ A | E | A‖A | ∃x.A | p(Y)
EF ask(c)֌ A | E + E

Fig. 1: Syntax of the NSCCP language.

The difference w.r.t. [4] is that the tell action has a new parameter (in addition
to c), that is the R̄ rights. When executing tell(c, R̄), it is not obviously possible
to quantitatively impose more rights on c than c itself: therefore, the syntactic
conditions on R̄ when writing NSCCP programs are that ∀i. c ⊢ R̄t[i], c ⊢
R̄a[i], c ⊢ R̄r[i].

To give an operational semantics to our language we describe an appro-
priate transition system 〈Γ,T,→〉 where Γ is a set of possible configurations,
T ⊆ Γ is the set of terminal configurations and →⊆ Γ × T is a binary relation
between configurations. The set of configuration is Γ = {〈A, σ,R 〉} where σ ∈ C
and R is the matrix of rights, while the set of terminal configuration is instead
T = {〈success, σ,R〉}. To remember also the rights, we need to extend the repre-
sentation of a computation state in NSCCP in Def. 2.

Definition 2 (Computation States). The state of a computation in NSCCP is repre-
sented by the triple 〈A, σ,R〉, where A is the description of the agent still to be executed,
σ is the constraint store, andR is the set of the rights on the constraints.R is initialized
as ∀i.Rt[i] = ∅,Ra[i] = ∅,Rr[i] = ∅.

62

R1
σ , ∅ Rt[i] ⊢ c Rt[i] = Rt[i]⊖÷ c check(σ ⊗ c)֌

〈telli(c, R̄)֌ A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R2
σ = ∅ Rt[i] = Rt[i]⊖÷ c check(σ ⊗ c)֌
〈telli(c, R̄)֌ A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R3
Rr[i] ⊢ c R′r[i] = Rr[i]⊖÷ c σ ⊢ c σ′ = σ⊖÷ c check(σ⊖÷ c)֌

〈retracti(c)֌ A, σ,R〉 −→ 〈A, σ′,R′〉

R4
Rt[i] ⊢ R̄t Ra[i] ⊢ R̄a Rr[i] ⊢ R̄r p(Y) :: B ∈ F check(σ)֌

〈execpi(p(Y), R̄))֌ A, σ,R〉 −→ 〈A ‖ B, σ,R ∪ R̄〉

R5
〈E j, σ,R〉 −→ 〈A j, σ

′,R′〉 j ∈ [1,n]

〈Σn
i=1

Ei, σ,R〉 −→ 〈A j, σ′,R′〉

R6
Ra[i] ⊢ c σ ⊢ c check(σ)֌
〈aski(c)֌ A, σ,R〉 −→ 〈A, σ,R〉

R7
Ra[i] ⊢ c σ 6⊢ c check(σ)֌
〈nask(c)֌ A, σ〉 −→ 〈A, σ〉

R8
〈A, σ,R〉 −→ 〈A′, σ′,R′〉

〈A ‖ B, σ,R〉 −→ 〈A′ ‖ B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B ‖ A′, σ′,R′〉

R9
〈A, σ,R〉 −→ 〈success, σ′,R′〉
〈A ‖ B, σ,R〉 −→ 〈B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B, σ′,R′〉

R10
〈A[x/y], σ,R〉 −→ 〈B, σ′,R′〉
〈∃x.A, σ,R〉 −→ 〈B, σ′,R′〉 y fresh

R11
〈A, σ,R〉 −→ 〈B, σ′,R′〉
〈p(Y), σ,R〉 −→ 〈B, σ′,R′〉 p(Y) :: A ∈ F

Fig. 2: The transition system for NSCCP.

In Fig. 2 we describe the operational semantics of secure NSCCP. A full
explanation of the rules is given in [2]. In this paper we add rule R4; with this
rule we are able to create a new agent in parallel with the other already being
executed. The “body” of the new agent is described by one of the procedures
defined in the declaration section F, as presented in Fig. 1: in the precondition
of the rule, p(Y) :: B ∈ F. The creating agent can pass to the son a part of his
right, and at most all of his rights. These rights are not revoked from the creator.

References

1. Bella, G., Bistarelli, S.: Soft constraint programming to analysing security protocols.
TPLP 4(5-6), 545–572 (2004)

2. Bistarelli, S., Campli, P., Santini, F.: A secure coordination of agents with nonmonotonic
Soft Concurrent Constraint Programming. In: Proceedings of the ACM Symposium
on Applied Computing, SAC 2012. pp. 1551–1553. ACM (2012)

3. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM
Trans. Comput. Logic 7(3), 563–589 (2006)

4. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language to model
the negotiation process. to appear in Fundamenta Informaticae (2011)

5. Gorrieri, R., Lucchi, R., Zavattaro, G.: Supporting secure coordination in SecSpaces.
Fundam. Inform. 73(4), 479–506 (2006)

6. Sandhu, R., Samarati, P.: Access control: Principles and practice. IEEE Communica-
tions 32(9), 40–48 (1994)

7. Udzir, N.I., Wood, A.M., Jacob, J.L.: Coordination with multicapabilities. Sci. Comput.
Program. 64(2), 205–222 (2007)

8. Vitek, J., Bryce, C., Oriol, M.: Coordinating processes with secure spaces. Sci. Comput.
Program. 46(1-2), 163–193 (2003)

9. Whitman, M.E., Mattord, H.J.: Principles of Information Security. Course Technology
Press, Boston, MA, USA, 3rd edn. (2007)

63

The Binary Perfect Phylogeny with Persistent
Characters

Paola Bonizzoni1, Anna Paola Carrieri1, Riccardo Dondi3, and Gabriella
Trucco2

1 Dipartimento di Informatica Sistemistica e Comunicazione
Univ. degli Studi di Milano - Bicocca

bonizzoni@disco.unimib.it
2 Dipartimento di Tecnologie dell’Informazione Univ. degli Studi di Milano, Crema

gabriella.trucco@unimi.it
3 Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali

Univ. degli Studi di Bergamo, Bergamo
riccardo.dondi@unibg.it.

1 Introduction

The perfect phylogeny is one of the most investigated models in different areas
of computational biology. This model derives from a restriction of the parsimony
methods used to reconstruct the evolution of species (taxa) characterized by a
set of characters that are gained and/or lost during the evolution. In this paper
we focus on the binary characters that can take only the states 0 or 1, usually
interpreted as the presence or absence of the attribute in the taxa. Restrictions
on the type of changes from zero to one and vice versa lead to a variety of specific
models [4]. The most restrictive parsimony assumption is perfect phylogeny: a
tree in which each character state can change its state from 0 to 1 at most once.
The algorithmic solution of the Perfect Phylogeny model has been investigated
in [5], where a well known characterization of matrices admitting a perfect phy-
logeny4 and a linear time algorithm are provided. The perfect phylogeny model
has been successfully applied in the context of haplotype inference [6] and very
efficient polynomial time solutions to this problem have been proposed, includ-
ing linear-time algorithms [3], [10], [1]. However, this model is quite restrictive to
explain the biological complexity of real data, where homoplasy events (such as
recurrent mutations or back mutations) are present. Thus a central goal in this
model is to extend its applicability, while retaining the computational efficiency
where possible.

Following this research direction, in this paper we address the problem of
constructing a perfect-phylogeny under the assumption that only a special type
of back mutation may occur in the tree: a character may change state only twice
in the tree from 0 to 1 and from 1 to 0. These characters have already been
considered in the literature and called persistent by T. Przytycka [9] in a general
framework of tree inference.

4 A binary matrix M admits a rooted perfect phylogeny if and only if it does not
contain a pair of columns and three rows inducing the configurations (0, 1), (1, 0)
and (1, 1), also known as forbidden matrix.

64

We consider a binary matrix M of size n ×m that has columns associated
with the set C = {c1, . . . , cm} of characters and rows associated with the set
S = {s1, . . . , sn} of species, then M [i, j] = 1 if and only if species si has character
cj , otherwise M [i, j] = 0. The gain of a character c in a phylogenetic tree is
usually represented by an edge labelled by the character c. In order to model
the presence of persistent characters, the loss of a character c in the tree is
represented by an edge that is labelled by the negated character, denoted by c̄.
Formally, we define the persistent perfect phylogeny model as follows.

Persistent Perfect Phylogeny Let M be a binary matrix of size n ×m.
Then a persistent perfect phylogeny, in short p-pp tree for M , is a rooted tree T
that satisfies the following properties:

1. each node x of T is labelled by a vector lx of length m. The root of T is
labelled by a vector of all zeros, while for each node x of T the value lx[j]
represents the state, 0 or 1, of character cj in tree T . Each row of M labels
exactly one leaf of T ;

2. for each character cj there are at most two edges e = (x, y) and e′ = (u, v)
such that e, e′ occur along the same path from the root to a leaf of T ; if e
is closer to the root than e′, then the edge e is labelled cj , while edge e′ is
labelled c̄j ;

Let us state the main problem investigated in the paper.
The Persistent Perfect Phylogeny problem (P-PP): Given a binary

matrix M , returns a p-pp tree for M if such a tree exists.
We say that two positive characters c, c′ of matrix M are in conflict in matrix

M , if and only if the pair of columns c, c′ of M induces the four gametes (0, 1),
(1, 1), (1, 0) and (0, 0). Then the conflict graph5 associated with a binary matrix
M is the undirected graph Gc = (C,E ⊆ C × C) where a pair (u, v) ∈ E if
and only if u, v are in conflict in matrix M . Notice that a conflict graph with
no edges (called e-empty) does not necessarily imply the existence of a rooted
perfect phylogeny, because of the occurrence of the forbidden matrix with only
the three configurations (1, 1), (1, 0) and (1, 0). However, by allowing a character
to be persistent, the matrix admits a rooted persistent perfect phylogeny.

In this paper we propose a graph-based solution of the problem of the re-
construction of the persistent perfect phylogeny (in short P-PP problem) that is
obtained by restating the problem as a variant of the Incomplete Directed Perfect
Phylogeny [8], called Incomplete Perfect Phylogeny with Persistent Completion
(IP-PP problem). We show a polynomial-time algorithm that finds a solution
for the input matrices described by an e-empty conflict-graph. Then we use it
to develop an optimized version of the exact algorithm, that has been presented
in [2] and having a a worst time complexity that is polynomial in the number
n of rows of the matrix and exponential in the number m of characters. An
experimental analysis shows that the new optimized version outperforms the

5 The conflict graph is a well known concept that has been used several times in the
framework of the perfect phylogeny is a graph representation of the four gametes
(0, 1), (1, 1), (1, 0) and (0, 0).

65

previously proposed algorithm and has a wider applicability, since it can solve
all input matrices within fixed time bounds, while the previous algorithm was
not able to finish on some of them.

2 Solving the Persistent Perfect Phylogeny problem

Let M be a binary n×m matrix which is an instance of the P-PP problem. The
extended matrix associated with M is a matrix Me of size n× 2m over alphabet
{0, 1, ?} which is obtained by replacing each column c of M by a pair of columns
(c, c̄), where c is the positive character, while c̄ is the negated character, moreover
for each row s of M , it holds:

if M [s, c] = 1, then Me[s, c] = 1 and Me[s, c̄] = 0,

if M [s, c] = 0, then Me[s, c] = ? and Me[s, c̄] = ?.

Informally, the assignment of the pair (?, ?) in a species row s for the pair of
columns (c,c̄) means that character c could be persistent in species s, i.e. it is
gained and then lost. On the contrary, the pair (1, 0) assigned in a species row
s for the pair (c,c̄), means that character c is only gained by the species s. A
completion of a character c of matrix Me is obtained by solving the pair (?, ?)
given in the pair (c, c̄) by the value (0, 0) or (1, 1). A completion of matrix Me

is a completion of all characters of Me, while a partial completion of Me is a
completion of zero or more characters of Me. We introduce below a problem to
which we reduce P-PP, as shown in Theorem 1.

Incomplete Perfect Phylogeny with Persistent Completion Prob-
lem (IP-PP): given an extended matrix Me over {0, 1, ?} return a completion
M ′ of Me such that M ′ admits a pp tree, if it exists.

Thus we state the first result of the paper.

Theorem 1. Let M be a binary matrix and Me the extended matrix associated
with M . Then M admits a p-pp tree if and only if there exists a completion of
Me admitting a pp tree.

The notion of red-black graph GRB for a matrix M has been introduced to
find a completion of a matrix Me. It consists of the edge colored graph (V,E)
where V = C∪S, given C = {c1, · · · , cm} and S = {s1, · · · , sn} the set of positive
characters and species of matrix Me, while E is defined as follows: (s, c) ∈ E is
a black edge if and only if Me[s, c] = 1 and Me[s, c̄] = 0.

Realization of a character c and its canonical completion

Let C(c) be the connected component of graph GRB containing node c. The
realization of character c in graph GRB consists of:

1. adding red edges connecting character c to all species nodes s that are in
C(c) and such that (c, s) is not an edge of GRB ,

2. removing all black edges (c, s) in graph GRB . Then c is labelled active.

3. if an active character c′ is connected by red edges to all species of that are in
C(c′), then its outgoing red edges are deleted from the graph and c is labelled
c′ free.

66

The realization of a character c is associated with a canonical completion of
character c in matrix Me that is defined by completing each pair (?, ?) occurring
in the pair (c,c̄) as follows: the pair (?, ?) is completed by (1, 1) in every species s
that is in the connected component C(c) of graph GRB , (s is connected with c by
a red edge) while value (0, 0) is assigned in the remaining rows. We call e-empty
a red-black graph without edges. Since we are interested in computing canonical
completions of Me that admit a pp tree, only canonical completions that are
obtained by the realization of special sequences of characters of the red-black
graph are considered, as defined below.

Definition 1. Given a graph GRB for an extended matrix Me, a successful re-
duction of GRB is an ordering r =< ci1 , · · · , cim > of the set of all positive
characters of Me such that the consecutive realization of each character in r
leaves an e-empty red-black graph.

In [2] we show that finding a solution to an instance of the IP-PP problem is
equivalent to computing the existence of a successful reduction for the red-black
graph for the input matrix. Furthermore by the Theorem 1 a solution to the
IP-PP instance Me is equivalent to a solution to the P-PP instance M .

Theorem 2. Let Me be an extended matrix. Then Me admits a perfect phy-
logeny, if and only if there exists a successful reduction of the graph GRB for
Me.

We propose an algorithm, called Decide-pp-opt, for the P-PP problem
that is based on Theorems 1 and 2. It builds a decision tree that explores all
permutations of the set C of characters of Me in order to find one that is a
successful reduction, if it exists.

The following result is a consequence of two technical Lemmas that are omit-
ted for lack of space.

Theorem 3. Let M be a binary matrix that has an e-empty conflict graph. Then
matrix M admits a persistent perfect phylogeny and there exists a polynomial
time algorithm to build the p-pp tree for M .

We give a polynomial time algorithm, in the size of the input matrix M ,
to find a successful reduction of graph GRB , thus showing that a p-pp tree for
M always exists. Given c, c′ columns of M , then c < c′ if and only if for each
species s of M , it holds that M [s, c] ≤M [s, c′]. Then given M a binary matrix,
the partial order graph for M is the partial order P obtained by ordering columns
of M under the < relation.

The algorithm constructs the partial order graph P for M . Then it iterates
the following step to build a successful reduction r: - add to sequence r all
element in the set CM consisting of the maximal ones in P . Remove characters
CM from P .

Furthermore we propose a optimized version of the exact algorithm presented
in [2] that uses the polynomial time algorithm for an e-empty conflict graph.

67

Algorithm Decide-pp-opt(M , M ′, x, T)
Input: a binary matrix M of size n×m, a partial depth-first visit tree T of the
decision tree T and a leaf node x of T , a partial completion M ′ of the extend
matrix Me obtained by the realization of the characters labelling a path π from
r to node x of the tree T ;
Output: the tree T extended with the depth-first visit of T from node x. The
procedure eventually outputs a successful reduction r or fails to find such a
successful reduction.

- Step 1: if the incident edge to node x is labelled c, then realize c in GRB and
complete the pair of columns (c, c′) in M ′. If the matrix M ′ has a forbidden
matrix, then label x as a fail node.

- Step 2: compute the conflict graph Gc for the matrix M updated after the
realization of the characters along the path π from the root r to node x (i.e.
M is obtained after eliminating the rows that correspond to species-nodes
that are singletons in GRB),

- Step 3: if the conflict graph Gc is e-empty, then apply the polynomial-time
algorithm for an empty conflict-graph and return a successful reduction.
Else for each node xi that is a child of node x in tree T and is labelled by a
non-active character in GRB , apply Decide-pp-opt(M , M ′, xi, T ∪ {xi}).

The algorithm Decide-pp-opt has been implemented and tested over simulated
data produced by the tool ms by Hudson [7]. We have implemented the algorithm
in C++ and the experiments have been run on a standard Windows workstation
with 4 GB of main memory.

Table 1 reports the computation time to solve sets of 50 matrices for each
dimension (50, 15), (100, 15), (200, 15), and (500, 15) with a recombination rate 1
over 15. The sets contain only matrices that are solved within 5 minutes. Another
experiment has been done with 10 matrices of the same size 50×15 and different
number of edges in the conflict graph. The average time was 0.015, 0.031 and
0.051, respectively for the case of 1, 5 and 10 conflicts. Clearly, the number of
unsolved matrices increases with the size of the input matrices but also with the
number of conflicts that are present in the conflict graph. In order to test the
performance of the algorithm for large matrices in terms of number of species we
have processed a matrix of size 1000×15 with a conflict graph having 9 conflicts
(edges). It took 35.5 seconds to find the solution to the matrix. We also compared
the execution times of the exact algorithm and the optimized algorithm on sets
of matrices with fixed number of columns and different numbers of rows. The
Decide-pp-opt algorithm is able to find a solution for all matrices in contrast
to the Decide-pp algorithm that in some cases takes more than 10 minutes to
find a solution for a single matrix.

References

1. P. Bonizzoni. A linear time algorithm for the Perfect Phylogeny Haplotype prob-
lem. Algorithmica, 48(3):267–285, 2007.

2. P. Bonizzoni, R. Dondi, C. Braghin, and G. Trucco. The persistent perfect phy-
logeny model. Theoretical Computer Science, to appear, 2012.

68

nxm no P-PPH tot conflicts average conflicts solved matrices total time in s average time in s
alg. opt. alg. alg. opt. alg. alg. opt. alg.

50x15 6 236 4.72 47 50 89.12 32.32 1.90 0.65
100x15 4 175 3.5 48 50 436.02 194.63 9.08 3.89
200x15 3 147 2.94 48 50 1583.50 43.21 32.99 0.86
500x15 7 219 4.38 44 50 888.59 889.43 20.20 17.79

Table 1. The table has entries to specify the average time to solve a single matrix
(in seconds shortened as s), the number of matrices that do not admit a p-pp tree,
the total number of conflicts, measured as the number of edges in the graph Gc of the
matrices of each set, and the average number of conflicts. Each considered matrix has
a conflict graph Gc that consists of a single non trivial component.

3. Z. Ding, V. Filkov, and D. Gusfield. A linear time algorithm for Perfect Phylogeny
Haplotyping (pph) problem. Journal of Computational Biology, 13(2):522–553,
2006.

4. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2004.
5. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, pages

19–28, 1991.
6. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient

solutions. In Proc. 6th Annual Conference on Research in Computational Molecular
Biology (RECOMB 2002), pages 166–175, 2002.

7. R. R. Hudson. Generating samples under a wright-fisher neutral model of 31
genetic variation. Bioinformatics, 18(2):337–338, 2002.

8. I. Peer, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect phy-
logeny. Siam Journal on Computing, 33(3):590–607, 2004.

9. T. M. Przytycka. An important connection between network motifs and parsimony
models. In Proc. 10th Annual Conference on Research in Computational Molecular
Biology (RECOMB 2006), pages 321–335, 2006.

10. V. Satya and A. Mukherjee. An optimal algorithms for perfect phylogeny haplo-
typing. Journal of Computational Biology, 13(4):897–928, 2006.

69

On the Complexity of the Swap Common
Superstring Problem

Paola Bonizzoni2, Riccardo Dondi1, Giancarlo Mauri2, and Italo Zoppis2

1 DSLCS, Università degli Studi di Bergamo, Bergamo - Italy
2 DISCo, Università degli Studi di Milano-Bicocca, Milano - Italy

bonizzoni@disco.unimib.it, riccardo.dondi@unibg.it,

mauri@disco.unimib.it, zoppis@disco.unimib.it

Abstract. In several areas, in particular in bioinformatics, Shortest
Common Superstring problem (SCS) and variants thereof have been
successfully applied for strings comparison. In this paper we consider
a variant of SCS that have been recently introduced, Swapped Common
Superstring (SWCS), and we investigate its complexity. We show that
SWCS is APX-hard even when the input strings have length bounded
by a constant (equal to 10) or are over a binary alphabet.

1 Introduction

In several areas, such as bioinformatics [5], the Shortest Common Superstring
problem (SCS) has been successfully applied for strings comparison [2,6,7,8].
Recently, some variants of the SCS problem have been proposed to deal with
problems in bioinformatics and AI planning [4,3]. In this paper we consider one
of these variants, the Swapped Common Superstring (SWCS) problem, where,
given a set S of strings over an alphabet Σ and a text T over Σ, we look for a
swap ordering T ′ of T (an ordering of T obtained by swapping only some pairs
of adjacent characters) such that the number of input strings that are substrings
of T ′ is maximized.

The SWCS is known to be NP-hard [4], while a relaxed version of the prob-
lem, where each occurrence of a string in the swap ordering T ′ is counted, is
polynomial time solvable [4].

We investigate the complexity of SWCS under two natural parameters, i.e.
the length of the input strings and the size of the alphabet. We show that SWCS
is APX-hard even when the input strings have length bounded by a constant
(equal to 10) or they are over a binary alphabet.

Now, we define the problem formally. Given a string s and a substring sx of
s, we say that sx is covered by s.

Problem 1. [4] SWCS
Input: a set S = {s1, . . . , sn} of strings over alphabet Σ, a text T = t1t2 . . . tm,
where each ti, 1 ≤ i ≤ m, is a character in Σ.
Output: an ordering T ′ of the text T (called a swap ordering of T) that max-
imizes the number of strings in S that are covered by T ′, where T ′ is induced

70

by a permutation π : {1, . . . ,m} → {1, . . . ,m} such that: (1) if π(i) = j, then
π(j) = i, (2) for all i, π(i) ∈ {i− 1, i, i+ 1}, (3) if π(i) 6= i then tπ(i) 6= ti.

The definition given above establishes that a swap ordering T ′ of T is ob-
tained by swapping only some pairs of adjacent distinct characters in T .

2 Complexity of SWCS for Bounded Length and
Alphabet

In this section, we consider two restrictions of SWCS, namely the case when the
input strings length is bounded by 10 (denoted by 10 − SWCS) and the case
when the input strings are over a binary alphabet (denoted by SWCS(2)). We
show that both these restrictions are APX-hard.

In order to prove that 10−SWCS and SWCS(2) are APX-hard, we present
two L-reductions from the Maximum Independent Set on Cubic Graphs (MAX-
ISC). We recall that a graph is cubic when each of its vertices has degree three.
Given a cubic graph G = (V,E), with V = {v1, . . . , vq}, MAX-ISC asks for a
set V ′ ⊆ V of maximum cardinality, such that for each vi, vj ∈ V ′, it holds
{vi, vj} /∈ E. MAX-ISC is known to be APX-hard [1].

2.1 APX-hardness of 10 − SWCS

We show that 10−SWCS is APX-hard, giving a reduction from MAX-ISC. Let
G = (V,E) be a cubic graph, with V = {v1, . . . , vq}. In what follows, given a
vertex vi ∈ V , denote by vj , vh, vl the three vertices of G adjacent to vi. Next,
we define an instance (S, T) of 10 − SWCS associated with G. The alphabet
Σ over which the strings in S range, is defined as follows: Σ = {wi, xi : vi ∈
V } ∪ {ai,j : {vi, vj} ∈ E} ∪ {y}.

The set S of input strings is defined as follows: S =
⋃
i:vi∈V (Ii,1 ∪ Ii,2 ∪ Ii,3),

where Ii,1, Ii,2, Ii,3, with vi ∈ V , are three sets of strings defined as follows:
Ii,1 = {wiai,jwj , wiai,hwh, wiai,lwl}, Ii,2 = {wixiai,j , wixiai,h, wixiai,l}, Ii,3 =
{xiwiai,jwjxiwiai,hwhxiwi}.

Now, we define the text T . For each vi let Ti be the following string:

Ti = wixiai,jwjwixiai,hwhwixiai,lwl

Then, T is defined as follows:

T = T1yyyT2 . . . yyy . . . yyyTn
Given a swap ordering T ′ of T , we denote by T ′

i the swap ordering in T ′ of the
substring Ti of T , with 1 ≤ i ≤ q. We say that T ′

i has a configuration a, if each
pair wi, xi of Ti is swapped in T ′

i , that is T ′
i = xiwiai,jwjxiwiai,hwhxiwiai,lwl.

T ′
i has a configuration b if no pair is swapped in Ti, that is T ′

i is identical to Ti.
Next, we can show the following property of a swap ordering T ′ of T .

Lemma 1. Given a swap ordering T ′ of T , we can compute in polynomial time
a swap ordering T ′′ of T such that T ′′ covers at least as many input strings as

71

T ′, and such that, denoted as T ′′
i the swap ordering in T ′′ of the substring Ti of

T , it follows that each T ′′
i has either a configuration a or a configuration b.

Notice that a configuration a of T ′
i allows to cover 4 input strings, namely the

strings in Ii,1∪Ii,3, while a configuration b of T ′
i allows to cover 3 input strings,

namely the strings in Ii,2. A configuration a of T ′
i corresponds to a vertex vi in

an independent set of G, while a configuration b of T ′
i corresponds to a vertex

vi in a vertex cover of G. Lemma 2 is a consequence of this observation and of
Lemma 1.

Lemma 2. Let G = (V,E) be an instance of MAX-ISC and let (S, T) be the
corresponding instance of 10 − SWCS. Then, there is an independent set of G
of size p if and only if there is a swap ordering of T that covers 4p + 3(q − p)
input strings.

A direct consequence of Lemma 2 is the following theorem.

Theorem 1. The 10− SWCS problem is APX-hard.

2.2 APX-hardness of SWCS(2)

In this section we show that SWCS(2) is APX-hard. Let G = (V,E) be a cubic
graph, with V = {v1, . . . , vq}. For each vi ∈ V , denote by {vi, vj}, {vi, vh},
{vi, vk} the three edges incident on vi. The input text T consists of 2q − 1
substrings. More precisely, T contains a substring B(vi) for each vi ∈ V . These
substrings are separated by q − 1 identical substrings, denoted as SE:

T = SE ·B(v1) · SE ·B(v2) · . . . SE ·B(vq) · SE
Each substring SE is defined as follows: SE = 1111100000. Now, given a

vertex vi ∈ V , we define the associated substring B(vi). In order to define B(vi),
we have to introduce some notations. First, given a substring s of size 5, s
has an inactive configuration, denoted as I(s), if s = 00000, s has a positive
configuration, denoted as P (s), if s = 00100, s has a negative configuration,
denoted as N(s), if s = 01000.

Now, we introduce three strings that will be used to define B(vi). Given
a vertex vi ∈ V , let s(vi) be a string of length 5, which can have an inactive
configuration I(s(vi)), a positive configuration P (s(vi)) or negative configuration
N(s(vi)). Now, we define the following strings:

B(vi, ei,j) = I(s(v1)) · I(s((v2)) . . . P (s(vi)) . . . P (s(vj)) · · · · I(s(vq))

B(vi, ei,h) = I(s(v1)) · I(s(v2)) . . . P (s(vi)) . . . P (s(vh)) . . . I(s(vq))

B(vi, ei,l) = I(s(v1)) · I(s(v2)) . . . P (s(vi)) . . . P (s(vl)) · · · · I(s(vq))

The substringB(vi) is defined as follows:B(vi) = B(vi, ei,j)·B(vi, ei,h)·B(vi, ei,l).
Given a swap ordering T ′ of T , we denote by B′(vi) (B′(vi, ei,j) respectively)

the swap ordering of B(vi) (B(vi, ei,j) respectively) in T ′. A string B′(vi, ei,j),
with {vi, vj} ∈ E, has a positive configuration in T ′ if both s(vi) and s(vj)

72

have positive configurations in T ′; B′(vi, ei,j), with {vi, vj} ∈ E, has a negative
configuration in T ′ if both s(vi) and s(vj) have negative configurations in T ′.

Now, we define the set S of input strings. For each edge {vi, vj}, S contains
an input string:

si,j = I(s(v1)) . . . N(s(vi)) . . . N(s(vj)) · · · · I(s(vq))

Furthermore, for each vi ∈ V , S contains the following two input strings s′i =
00000 ·B(vi) · SE, s′′i = SE ·B(vi) · 11111.

First, we will show a property of the instance (S, T) of SWCS.

Lemma 3. Let (S, T) be an instance of SWCS, then a swap ordering T ′ of T
can cover in each substring B′(vi) either a string s ∈ {s′i, s′′i }, or a string si,j,
for some {vi, vj} ∈ E.

Now, consider an order T ′ of T . It can be shown that either B′(vi, ei,j),
B′(vi, ei,h), B′(vi, ei,k) have all negative configurations (in this case B′(vi) covers
the strings si,j , si,h, si,k and corresponds to a vertex in an independent set of
G) or B′(vi, ei,j), B′(vi, ei,h), B′(vi, ei,k) have all positive configurations (in this
case B′(vi) covers the strings s′i, s

′′
i and corresponds to a vertex in a vertex cover

of G).
Lemma 4 follows from this observation and from Lemma 3.

Lemma 4. Let G = (V,E) be an instance of MAX-ISC and let (S, T) be the
corresponding instance of SWCS(2). Then, there is an independent set of G of
size p if and only if there is a swap ordering of T that covers 3p+ 2(q− p) input
strings.

A direct consequence of Lemma 4 is the following theorem.

Theorem 2. The SWCS(2) problem is APX-hard.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. The-
oretical Comput. Sci., 237(1–2):123–134, 2000.

2. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of
shortest superstrings. J. ACM, 41(4):630–647, 1994.

3. R. Clifford, Z. Gotthilf, M. Lewenstein, and A. Popa. Restricted common super-
string and restricted common supersequence. In CPM 2011, pages 467–478, 2011.

4. Z. Gotthilf, M. Lewenstein, and A. Popa. On shortest common superstring and
swap permutations. In SPIRE 2010, pages 270–278, 2010.

5. D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, 1997.

6. S. Ott. Lower bounds for approximating shortest superstrings over an alphabet of
size 2. In WG 1999, pages 55–64, 1999.

7. Z. Sweedyk. A 2 1
2
-approximation algorithm for shortest superstring. SIAM J.

Comput., 29(3):954–986, 1999.
8. V. Vassilevska. Explicit inapproximability bounds for the shortest superstring

problem. In MFCS 2005, pages 793–800, 2005.

73

Moore Automata and Epichristoffel Words

Giusi Castiglione and Marinella Sciortino

Dipartimento di Matematica e Informatica
Università di Palermo, via Archirafi, 34 - 90123 Palermo, Italy

{giusi, mari}@math.unipa.it.

In recent years (cf. [1, 3, 4]) a bridge between combinatorics on words and the
study of complexity of algorithms for the minimization of finite state automata
(acceptors) has aroused great interest. In particular, the study of combinatorial
properties of christoffel classes (or circular sturmian words) allowed to prove
that Hopcroft’s minimization algorithm becomes not ambiguous when applied
to the family of cyclic unary acceptors constructed by circular sturmian word.
Furthermore, for particular subfamilies the tightness is obtained.

In the field of combinatorics on words, increasing the cardinality of the letters
alphabet can give rise to new problematic questions. For example, for epistur-
mian words (cf. [5]) representing an extension to a larger alphabet of the notion
of infinite sturmian word, many of the crucial properties of such a family of
words, as the balancing, are lost. These considerations also hold when finite
combinatorial objects as circular words are considered.

We denote by (w) the circular word over the k-ary alphabet A corresponding
to all the conjugates of the word w. Given a circular word (w) a factor u is
called m-special if there exist exactly m distinct characters a1, a2, . . . , am in
the alphabet A, such that all uai are factors of (w) for each i = 1, . . . ,m.
Some families of circular words are able to capture many properties of classes of
infinite words. For instance, in the binary case, circular sturmian words inherits
the balancing from infinite sturmian words. Moreover each circular sturmian
word (w) admits a unique 2-special factor for each length up to |w| − 2. In [4, 2]
other structural characterizations have been also investigated.

Circular epichristoffel words, introduced in [8], are circular words that main-
tain some structural properties of episturmian words. More formally, we say that
(w) is a circular epichristoffel word if it is the image of a letter by an epistur-
mian morphism. One can prove that, for each length up to |w|−2, there exists a
unique special factor. In case of k-ary alphabet the problem of determining for
each 2 ≤ m ≤ k the maximal length of all m-special factors can be investigated.
Several properties of circular sturmian words can not be extended to circular
epichristoffel words and there are a lot of open problems connected to such a
family. Furthermore, the study of such a class seems to be connected to Fraenkel
conjecture.

In this paper we deal with the question of how the process of minimization of a
Moore automaton (cf. [7]) is influenced by the problems arising in combinatorics
on words when alphabets of size greater than 2 are considered. Note that for
such automata, differently from acceptors, the output alphabet is not binary.
In particular, we analyze the behavior of a variant of Hopcroft’s algorithm on a

74

family of unary cyclic Moore automata associated to circular epichristoffel words
and we relate the minimization process with particular factorization properties,
here introduced, of such words.

Given p = (p1, p2, . . . , pk) a k-tuple of non-negative integers, in [8] the author
gives an algorithm to determine whether a circular epichristoffel word, having p
as vector of occurrences of the letters, there exists and a construction is shown.
All the steps of the construction determine a sequence of letters, called directive
sequence, used to construct the circular epichristoffel word.

We prove that each letter ai of a k-ary alphabet A uniquely determines a
circular factorization of a circular epichristoffel word (w) defined over A in a set
Xai

containing k circular epichristoffel words. Such a factorization is induced by
the directive sequence. Let zai

(w) be the circular word obtained from (w) by
encoding by a1, a2, . . . , ak the occurrences of the correspondent elements of Xai

.
Let us denote by (i(w)) the circular epichristoffel word obtained by permuting
the letters of (w) such that the associated k-tuple is not increasing, i.e. p1 ≥
p2 ≥ . . . ≥ pk. We prove that the circular word (i(zai

(w)), denoted by Lai
(w), is

a circular epichristoffel word. Therefore, we can associate to each epichristoffel
word (w) a k-ary tree τ(w), called reduction tree, defined as follows.

– If w is a single letter ai, τ(w) is a single node labeled by (i(ai)) = (a1).
– If |w| > 1, τ(w) is a tree with root labeled by (i(w)) and at most k subtrees.

The i-th subtree is τ(Lai
(w)).

Figure 1 shows an instance of reduction tree of a circular epichristoffel word
and its correspondent factorizations. It is possible to prove that each circular
epichristoffel word is uniquely determined by its reduction tree, as stated in the
following theorem.

Theorem 1. Let (w) and (w′) be two circular epichristoffel words over the al-
phabet A = {a1, . . . , ak}. Then, τ(w) = τ(w′) if and only if (w′) = (w) (up to a
permutation of the letters).

Let (w) = (a1a2 . . . an) be a circular word over the alphabet A. The cyclic
automaton associated to (w), denoted by Aw, is a particular deterministic Moore
automaton (DMA) A = (Σ,A,Q, q0, δ, λ) in which Q = {1, 2, . . . , n} is the set
of states, Σ = {0} is the input alphabet, A is the output alphabet, δ is the
transition function defined as δ(i, 0) = (i + 1), ∀ i ∈ Q \ {n} and δ(n, 0) = 1.
The choice of q0 does not affect the minimization process. Moreover, λ : Q 7→ Γ
is a output function that assigns an output to the states of the automaton here
defined as λ(i) = ai for each i ∈ Q. See Figure 2(a) for an example.

In this paper we propose a minimization strategy (called L-Minimization
algorithm) for DMA that is variant of Hopcroft’s minimization algorithm, the
most efficient known minimization algorithm for acceptors (cf. [6]) that runs
in time O(n log n). It can operate on a generic deterministic Moore automaton
and it is based on two main ingredients. The first one is the notion of m-split
operation, defined as follows. Given a partition Π of Q, let C ⊂ Π, we say
that (C, a) m-splits the class B if there exist {Q1, Q2, . . . , Qm−1} ⊂ C such

75

(aabaaabaac)

(abaabac)

(abac)

(ab)

(a) (a)

(a) (a)

(ab)

(a) (a)

(a)

(ab)

(a) (a)

(a)

Fig. 1: The reduction tree τ(aabaaabaac). The circular word (aabaaabaac) can
be circularly factorized into circular epichristoffel words, as follows: (w) =
(a)(ab)(a)(a)(ab)(a)(ac), (w) = (aacaab)(aaab), (w) = (aabaaabaac). Such factoriza-
tions are coded by the circular epichristoffel words (abaabac), (ca) and (c), respectively.
Consequently, La(w) = (abaabac), Lb(w) = (ab), Lc(w) = (a). Analogously, the other
factorizations can be determined.

that δ−1a (Qi) ∩ B 6= ∅ and B * δ−1a (Qi), with i = 1, . . . ,m − 1. In this case
the set B can be, obviously, split into Bi = δ−1a (Qi) ∩ B, with i = 1, . . . ,m −
1 and Bm = B \ ⋃i=1,...,m−1Bi. The pairs (C, a) are stored and successively
extracted from an auxiliary data structure W, called waiting set. The second
ingredient is the all but not the largest strategy instead of smaller half strategy
of the classical Hopcroft’s minimization algorithm. In particular, we store into
the waiting set W all but not the largest sets obtained from the m − split as
the (m − 1)-tuple (C, a). Such a strategy is applied throughout the algorithm,
starting with the first step in which the set Q of states is split into classes of
states having the same output function λ and this is fundamental in order to
obtain the minimal automaton. The successive split operations and insertions
into W could be execute by the smaller-half strategy where 2-splits can occur.
Also in this case the minimal automaton is produced. Although, in general,
L-minimization is not deterministic, we show that there is an infinite family
of automata for which, differently from smaller-half strategy, it has a unique
execution, as stated in the following theorem.

Theorem 2. The execution of L-Minimization algorithm on cyclic automata
associated to circular epichristoffel words is unique.

Such a result can be proved by using the fact that a m-split occurs in correspon-
dence with m-special factor of the circular word.

However, it is possible to verify that there exist infinite families of Moore
automata for which the executions of our algorithm are better than some ex-
ecutions of the smaller-half minimization strategy and vice-versa. It could be
interesting to study the tightness and the average time complexity of the two
methods.

The refinement process produced during each execution of the algorithm on
a generic Moore automaton A, can be represented by a k-ary tree T (A), also

76

1/a

2/a
3/b

4/a

5/a

6/a

7/b
8/a

9/a

10/c

0

0 0

0

0

0

00

0

0

(a)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 4, 5, 6, 8, 9}

{1, 4, 5, 8}

{1, 5}

{1} {5}

{4} {8}

{2, 6}

{2} {6}

{9}

{3, 7}

{3} {7}

{10}

(b)

Fig. 2: (a) Cyclic automaton Aw for (w) = (aabaaabaac); Σ = {0}, A = {a, b, c},
λ(1) = λ(2) = λ(4) = λ(5) = λ(6) = λ(8) = λ(9) = a, λ(3) = λ(7) = b, λ(10) = c. (b)
The derivation tree T (Aw).

called derivation tree, whose nodes are labeled by classes of the partitions and
their descendants are the classes produced by the m-split operations. See Figure
2(b) for an example. Note that, in general, the shape of the derivation tree is
strongly affected from the non-deterministic choices of minimization algorithm,
although the leaves are the same.

The following theorem establishes a relationship between derivation trees and
reduction trees.

Theorem 3. If (w) is a circular epichristoffel word then T (Aw) and τ(w) are
isomorphic.

References

1. J. Berstel, L. Boasson, and O. Carton. Continuant polynomials and worst-case
behavior of Hopcroft’s minimization algorithm. Theor. Comput. Sci., 410:2811–
2822, 2009.

2. J.-P. Borel and C. Reutenauer. On christoffel classes. ITA, 40(1):15–27, 2006.
3. G. Castiglione, A. Restivo, and M. Sciortino. Hopcroft’s algorithm and cyclic au-

tomata. In C. Mart́ın-Vide, F. Otto, and H. Fernau, editors, LATA, volume 5196
of Lecture Notes in Computer Science, pages 172–183. Springer, 2008.

4. G. Castiglione, A. Restivo, and M. Sciortino. Circular sturmian words and
Hopcroft’s algorithm. Theor. Comput. Sci., 410(43):4372–4381, 2009.

5. A. Glen and J. Justin. Episturmian words: a survey. ITA, 43(3):403–442, 2009.
6. J.E. Hopcroft. An n logn algorithm for mimimizing the states in a finite automaton.

In Theory of machines and computations (Proc. Internat. Sympos. Technion, Haifa,
1971), pages 189–196. Academic Press, New York, 1971.

7. E.F. Moore. Gedaken experiments on sequential machines, pages 129–153. Princeton
University Press, 1956.

8. G. Paquin. On a generalization of christoffel words: epichristoffel words. Theor.
Comput. Sci., 410(38-40):3782–3791, 2009.

77

Data mining for a student database

R. Campagni, D. Merlini, and R. Sprugnoli

Dipartimento di Sistemi e Informatica
viale Morgagni 65, 50134, Firenze, Italia

[renza.campagni,donatella.merlini,renzo.sprugnoli]@unifi.it

1 Introduction

Educational data mining is an emerging research area that produces useful,
previously unknown issues from educational database for better understanding
and improving the performance and assessment of the student learning process
(see [2] and the included references, for a detailed description of the state of the
art in this context). This paper presents some data mining models to analyze
the careers of University students and extends the research illustrated in [1],
introducing a new approach to this research area. The career of a student can
be analyzed from various points of view, among which the following two are
particularly important: i) the perspective of the student, who evaluates how
difficult and important an exam is, in order to decide to take it immediately at
the end of the course, or delay it as much as possible; this aspect is studied in
Section 2 with cluster and classification algorithms by introducing a notion of
distance between careers; and ii) the perspective of each course, by analyzing
the distribution of students with respect to the delay with which they take an
examination, to discover common characteristics between two or more courses;
this is done in Section 3 in terms of Poisson distributions.

2 The perspective of the student

The methodology we propose is based on a database containing information
about students and their exams in a University organization. In particular, for
each student, the database contains general information such as the sex, the
place of birth, the grade obtained at the high school level, the year of enrollment
at the university, the date and the grade of final examination besides information
about each exam, that is, the identifier of the exam, the date and the grade. We
refer to an organization of the university which allows students to take an exam
in different sessions after the end of the course, as in Italy. Some constrains
between exams can be fixed in order to force students to take some exams in a
specific order, however, usually students have many degrees of freedom to choose
their own order of exams. An important information which is a basilar aspect of
our methodology is the semester ; an academic year is divided into two semesters,
during which the courses are taken according to the established curriculum. A
student can take an exam in the same semester of the course, that is just after

78

the end of the course, or later, with a delay of one or more semesters. This
information allows us to define an ideal path to be compared with the path of
a generic student. More precisely, we consider a database containing the data of
N students, each student characterized by a sequence of n exams identifiers and
a particular path I = (e1, e2, · · · , en), the ideal path1, corresponding to the ideal
student who has taken every examination just after the end of the corresponding
course, without delay. Without loss of generality, we can assume that ei = i,
i = 1, · · · , n, that is, I = (1, 2, · · · , n). The path of a generic student k with k =
1, · · · , N, can be seen as a sequence Sk = (eπk(1), eπk(2), · · · , eπk(n)) of n exams,
where eπk(i), i = 1, · · · , n, is the identifier of the exam taken by the student k
at time i and πk indicates the corresponding permutation of 1, · · · , n. Therefore,
Sk can be seen as a permutation of the integers 1 through n. The idea is to
understand how the order of the exams affects the final result of students. To this
purpose, we compare a path Sk with I by using the Bubblesort distance, which
is defined as the number of exchanges performed by the Bubblesort algorithm
to sort an array containing the numbers from 1 to n. The number of exchanges
can be computed easily since it corresponds exactly to the number of inversions
in the permutation. Given a permutation π = (π1, π2, · · · , πn) of the integers 1
through n, an inversion is a pair i < j with πi > πj . If qj is the number of i < j
with πi > πj then q = (q1, q2, · · · , qn) is called the inversion table of π. We use
the notation σ(π) to denote the number of inversions in the permutation, that
is, the sum of the entries in the inversion table: σ(π) =

∑n
j=1 qj . For example,

the permutation π = (5, 2, 3, 1, 4) corresponds to q = (0, 1, 1, 3, 1) and σ(π) = 6.

The path Sk of a generic student k can be compared with the ideal path
I by computing σ(Sk), k = 1, · · · , N. After this preprocessing phase, we can
assume that for each student our database contains at least the following infor-
mation: the graduation time, Time, the final grade, Vote, and the Bubblesort

distance, together with other personal information. We can proceed by applying
a cluster algorithm, for example K-means2 (see e.g, [3]). If the cluster algorithm
splits the students into K well defined groups characterized by similar Bubble-
sort distance, we can infer important conclusions about students and the laurea
degree. We observe explicitly that students who have taken the exams in the
same order, that is, students with the same path, can have different final grade
and graduation time. The idea is to understand if there exists a relation between
the Bubblesort distance and the success of students. If the students having small
distance achieve good performance, then we may conclude that the academic de-
gree is well structured but if there exist many good students with large distances,
then the organization should probably be modified. We can extend our analysis

1 Since in the same semester there are many courses, the ideal path is not unique. In
this paper we sort courses relative to the same semester according to the preference
of students. A different solution consists in giving the same identifier to courses in
the same semester; for example, (1, 1, 2, 2, 2, 3, 3) would represent a sequence of 7
exams, two in the first and third semester and three in the second.

2 We wish to point out that the Bubblesort distance is an attribute inserted in our
database and that we use K-means with the Euclidean distance.

79

through the technique based on decision trees. To this purpose, we need to add
to the database a new attribute Bubblesort class which labels the students
into K different ways, according to the ranges of values of Bubblesort distance
in the K clusters previously found. This new attribute can be used to classify
students, for example by using the C4.5 algorithm (see e.g, [3]). The aim is to
classify students as talented or not and find the attributes which most influence
their career. We can also try to classify with respect to other attributes: for ex-
ample, we can predict whether a student has a long (short) career or obtains a
high (low) final grade by introducing a Time class or a Vote class attribute in
the database. The greater are the database and the information in it, the more
accurate will result the model based on this technique.

The database we analyze contains data of students in Computer Science at
the University of Florence beginning their career during the years 2001-2003 and
graduated up to now. This academic degree is structured in three years, each
divided in two semesters. In the years under consideration, no constrains be-
tween exams were fixed, so students could take their exams almost in any order.
In particular, we analyzed the careers of N = 100 students characterized by a
sequence of n = 25 exams. We computed the ideal path through an important
pre-processing phase, which allowed us to identify the semester in which courses
were originally hold. Then, for each student we computed the Bubblesort dis-
tance and added this value to the database. To understand how the order of
the exams affects the career of the students, we have performed several tests
by using the K-means implementation of WEKA (see, e.g., [4]). We obtained sig-
nificant result with K = 2 by selecting as clustering attributes Time, Vote and
Bubblesort distance. In fact, with these parameters we can see that students
are well divided into two groups: students who graduated relatively quickly and
with high grades and students who obtained worse results. Luckily, we observed
that students in the first group are characterized by small values of Bubblesort
while students in the second group have larger values. This result confirms that
the more students follow the order taken by the ideal path, the more they obtain
good performance in terms of graduation time and final grade. For what con-
cerns classification, we applied the C4.5 implementation of WEKA with different
choices of attributes and class. The most interesting tree we obtained classifies
students with respect to small (≤ 100) and large (> 100) values of Bubblesort
distance confirming the result of clustering and, moreover, highlights that the
results obtained at the high school influence the performance of students.

3 The perspective of the course: delayed exams

Usually, “good” students try to pass early every exam, but “not so good” stu-
dents prefer to postpone most exams, especially if they are considered too dif-
ficult or too technical. We are interested in studying the delay distribution of
every exam in the hypothesis that it is a good parameter for classifying students
and/or courses. In general, delays conform to some Poisson distribution, with
average (and variance) λ and probability mass function Pλ(k) = e−λ · λk/k! for

80

k ≥ 0. The Poisson distribution is discrete and, in our case, k represents the
delay of the exam from the end of the course, measured in full years. So, if N is
the number of students, Pλ(0) ·N is the number of those who passed the exam
within the first year; Pλ(1) · N are the students who passed during the second
year, and so on. Finally, the distribution is unimodal and attains its maximum
value at k ≈ λ. If we look at the actual distributions of students with respect
to the delay with which they took their examinations, we observe that most of
them are bimodal, with a sharp peak at k = 0 and a second and smoother peak
at k = 2 or k = 3. The obvious interpretation is that there are two different
distributions, the first one relative to “good” students and the second relative
to “not so good” students, who delay their exams of about two years. The two
distributions are superimposed and generate the two peaks. In other words, by
examining the distributions for each exam, we can infer that students are di-
vided into two classes: students who tend to take an exam as soon as a course
is terminated, and students who delay difficult exams to the end of their career.
In order to analyze this behavior in a more formal way, we need to find the two
Poisson distributions. We consider n courses c1, c2, · · · , cn taken by N students
and a database containing, for each course ci, the number of students Dci(k)
which take the exam with delay k, for k = 0, · · · , di, where di is the maximum
delay relative to course ci. We then use the following algorithm to determine
the average values λg and λng characterizing the two Poisson distributions and
the corresponding numbers N(λg) and N(λng) of students. We can make the hy-
pothesis that the λg-distribution decreases very fast so that it reduces to k = 0, 1
as meaningful values. Our first step consists in separating the first two values
from the rest and try to approximate the λng-distribution. We iterate this ap-
proximation process until a fixed point is obtained. This process can modify the
values for k = 0 and k = 1, so that we have to use these new values to approx-
imate the λg-distribution. Again, we proceed until a fixed point is found. The
algorithm stops here returning, for each course, the two desired approximations.

We applied the algorithm to n = 15 courses taken by N = 152 students in
Computer Science at the University of Florence. The analysis confirmed that for
each course ci we have Dci(k) ∼ Pλgi

(k) · N(λgi) + Pλngi
(k) · N(λngi), with a

good approximation. In particular, we found that Computer Science exams are
characterized by N(λg)/N ∼ 70%. Instead, Mathematics exams are delayed and
often appear as the last exams taken before the final examination.

References

1. R. Campagni, D. Merlini, and R. Sprugnoli. Analyzing paths in a student database.
In The 5th International Conference on Educational Data Mining, 208–209, 2012.

2. C. Romero and S. Ventura. Educational Data Mining: A Review of the State of the
Art. IEEE Transactions on systems, man and cybernetics, 40(6):601–618, 2010.

3. P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2006.

4. I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques, Third Edition. Morgan Kaufmann, 2011.

81

A Fast Active Learning Algorithm for Link
Classification?

Nicolò Cesa-Bianchi1, Claudio Gentile2, Fabio Vitale3, and Giovanni Zappella4

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
nicolo.cesa-bianchi@unimi.it

2 Dipartimento di Scienze Teoriche ed Applicate, Università dell’Insubria, Italy
claudio.gentile@uninsubria.it

3 Dipartimento di Informatica, Università degli Studi di Milano, Italy
fabio.vitale@unimi.it

4 Dipartimento di Matematica, Università degli Studi di Milano, Italy
giovanni.zappella@unimi.it

Abstract. We present a very efficient active learning algorithm for link
classification in signed networks. Our algorithm is motivated by a stochas-
tic model in which edge labels are obtained through perturbations of an
initial sign assignment consistent with a two-clustering of the nodes.
We provide a theoretical analysis within this model, showing that we
can achieve an optimal (to within a constant factor) number of mis-
takes on any graph G = (V,E) such that |E| = Ω(|V |3/2) by query-
ing O(|V |3/2) edge labels. More generally, we show an algorithm that
achieves optimality to within a factor of O(k) by querying at most order
of |V | + (|V |/k)3/2 edge labels. The running time of this algorithm is at
most of order |E| + |V | log |V |.

1 Introduction

A rapidly emerging theme in the analysis of networked data is the study of
signed networks. From a formal viewpoint, signed networks are graphs whose
edges host a sign encoding the positive or negative nature of the relationship
between the incident nodes. E.g., in a protein network two proteins may inter-
act in an excitatory or inhibitory fashion. The domain of social networks and
e-commerce offers several examples of signed relationships: Slashdot users can
tag other users as friends or foes, Epinions users can rate other users positively
or negatively, Ebay users develop trust and distrust towards sellers in the net-
work. More generally, two individuals that are related because they rate similar
products in a recommendation website may agree or disagree in their ratings.

The availability of signed networks has stimulated the design of link classifi-
cation algorithms, especially in the domain of social networks. Early studies of
signed social networks are from the Fifties. E.g., [6] and [1] model dislike and
distrust relationships among individuals as (signed) weighted edges in a graph.
The conceptual underpinning is provided by the theory of social balance, formu-
lated as a way to understand the structure of conflicts in a network of individuals

? This work was supported in part by Google Inc. through a Google Research Award,
by the PASCAL2 Network of Excellence under EC grant 216886 and by ”Dote
ricerca: FSE, Regione Lombardia. This publication only reflects the authors views.

82

whose mutual relationships can be classified as friendship or hostility [7]. The
advent of online social networks has revamped the interest in these theories,
and spurred a significant amount of recent work —see, e.g., [5, 8, 10, 3, 2], and
references therein.

Many heuristics for link classification in social networks are based on a form
of social balance summarized by the motto “the enemy of my enemy is my
friend”. This is equivalent to saying that the signs on the edges of a social graph
tend to be consistent with some two-clustering of the nodes. By consistency we
mean the following: The nodes of the graph can be partitioned into two sets
(the two clusters) in such a way that edges connecting nodes from the same
set are positive, and edges connecting nodes from different sets are negative.
Although two-clustering heuristics do not require strict consistency to work, this
is admittely a rather strong inductive bias. Despite that, social network theorists
and practitioners found this to be a reasonable bias in many social contexts, and
recent experiments with online social networks reported a good predictive power
for algorithms based on the two-clustering assumption [8–10, 3]. Finally, this
assumption is also fairly convenient from the viewpoint of algorithmic design.

In the case of undirected signed graphs G = (V,E), the best performing
heuristics exploiting the two-clustering bias are based on spectral decompositions
of the signed adiacency matrix. Noticeably, these heuristics run in time Ω

(
|V |2

)
,

and often require a similar amount of memory storage even on sparse networks,
which makes them impractical on large graphs.

In order to obtain scalable algorithms with formal performance guarantees,
we focus on the active learning protocol, where training labels are obtained by
querying a desired subset of edges. Since the allocation of queries can match the
graph topology, a wide range of graph-theoretic techniques can be applied to the
analysis of active learning algorithms. In the recent work [2], a simple stochastic
model for generating edge labels by perturbing some unknown two-clustering of
the graph nodes was introduced. For this model, the authors proved that query-
ing the edges of a low-stretch spanning tree [4] of the input graph G = (V,E)
is sufficient to predict the remaining edge labels making a number of mistakes
within a factor of order (log |V |)2 log log |V | from the theoretical optimum. The
overall running time is O(|E| ln |V |). This result leaves two main problems open:
First, low-stretch trees are a powerful structure, but the algorithm to construct
them is not easy to implement. Second, the tree-based analysis of [2] does not
generalize to query budgets larger than |V | − 1 (the edge set size of a spanning
tree). In this paper we introduce a different active learning approach for link
classification that can accomodate a large spectrum of query budgets. We show
that on any graph with Ω(|V |3/2) edges, a query budget of O(|V |3/2) is sufficient
to predict the remaining edge labels within a constant factor from the optimum.

More in general, we show that a budget of at most order of |V |+
(|V |
k

)3/2
queries

is sufficient to make a number of mistakes within a factor of O(k) from the op-
timum with a running time of order |E| + (|V |/k) log(|V |/k). Hence, a query
budget of Θ(|V |), of the same order as the algorithm based on low-strech trees,
achieves an optimality factor O(|V |1/3) with a running time of just O(|E|).

83

2 Results

We consider undirected and connected graphs G = (V,E) with unknown edge
labeling Yi,j ∈ {−1,+1} for each (i, j) ∈ E. Edge labels can collectively be
represented by the associated signed adjacency matrix Y , where Yi,j = 0 when-
ever (i, j) 6∈ E. We define a simple stochastic model for assigning binary labels
Y to the edges of G. We assume that edge labels are obtained by perturbing
an underlying labeling which is initially consistent with an arbitrary (and un-
known) two-clustering. More formally, given an undirected and connected graph
G = (V,E), the labels Yi,j ∈ {−1,+1}, for (i, j) ∈ E, are assigned as follows.
First, the nodes in V are arbitrarily partitioned into two sets, and labels Yi,j are
initially assigned consistently with this partition (within-cluster edges are posi-
tive and between-cluster edges are negative). Then, given a nonnegative constant
p < 1

2 , labels are randomly flipped in such a way that P
(
Yi,j is flipped

)
≤ p for

each (i, j) ∈ E. We call this a p-stochastic assignment. Note that this model
allows for correlations between flipped labels.

A learning algorithm in the link classification setting receives a training set
of signed edges and, out of this information, builds a prediction model for the
labels of the remaining edges.

Fact 1. For any training set E0 ⊂ E of edges, and any learning algorithm that
is given the labels of the edges in E0, the number M of mistakes made by the
algorithm on the remaining E \ E0 edges satisfies EM ≥ p

∣∣E \ E0

∣∣, where the
expectation is with respect to a p-stochastic assignment of the labels Y .

An active learner for link classification is a special learning algorithm that
first constructs a query set E0 of edges, and then receives the labels of all edges in
the query set. Based on this training information, the learner builds a prediction
model for the labels of the remaining edges E \ E0. We assume that the only
labels ever revealed to the learner are those in the query set, no labels being
revealed during the prediction phase. It is clear from Fact 1 that any active
learning algorithm that queries the labels of at most a constant fraction of the
total number of edges will make on average Ω(p|E|) mistakes.

Theorem 1. An active learning algorithm parameterized by interger k ≥ 2 ex-

ists such that for any graph G = (V,E) with |E| ≥ 2|V | − 2 + 2
(|V |−1

k + 1
) 3

2 ,
and diameter DG, the number M of mistakes made by the algorithm on G
satisfies EM = O(min{k,DG}) p|E|, while the query set size is bounded by

|V | − 1 +
(|V |−1

k + 1
) 3

2 ≤ |E|2 .

Hence, even if DG is large, setting k = |V |1/3 yields a O(|V |1/3) optimality
factor just by querying O(|V |) edges. On the other hand, a truly constant op-
timality factor is obtained by querying as few as O(|V |3/2) edges (provided the
graph has sufficiently many edges). As a direct consequence (and surprisingly
enough), on graphs which are only moderately dense we need not observe too
many edges in order to achieve a constant optimality factor. It is instructive to
compare the bounds obtained by our algorithm to the ones we can achieve by
using the cccc algorithm of [2], or the low-stretch spanning trees [4].

84

Because cccc operates within a harder adversarial setting, it is easy to
show that Theorem 9 in [2] extends to the p-stochastic assignment model by
replacing ∆2(Y) with p|E| therein.5 The resulting optimality factor is of order(
1−α
α

) 3
2
√
|V |, where α ∈ (0, 1] is the fraction of queried edges out of the total

number of edges. A quick comparison to Theorem 1 reveals that our algorithm
achieves a sharper mistake bound for any value of α. For instance, in order to
obtain an optimality factor which is lower than

√
|V |, cccc has to query in the

worst case a fraction of edges that goes to one as |V | → ∞.
A low-stretch spanning tree achieves a polylogarithmic optimality factor by

querying |V |−1 edge labels. The results in [4] show that we cannot hope to get a
better optimality factor using a single low-stretch spanning tree combined with
the analysis in [2]. For a comparable amount Θ(|V |) of queried labels, Theorem
1 offers the larger optimality factor |V |1/3. However, we can get a constant
optimality factor by increasing the query set size to O(|V |3/2). It is not clear
how multiple low-stretch trees could be combined to get a similar scaling.

Finally, besides being easy to implement, our algorithm is also very fast.

Theorem 2. For any input graph G = (V,E) which is dense enough to ensure
that the query set size is no larger than the test set size, the total time taken by

our algorithm for predicting all test labels is O
(
|E|+ |V |

k log |V |k

)
. In particular,

whenever k|E| = Ω(|V | log |V |) we have that our algorithm works in constant
amortized time. The space required is always linear in the input graph size |E|,
independent of k.

References
1. Cartwright, D. and Harary, F. Structure balance: A generalization of Heider’s

theory. Psychological review, 63(5):277–293, 1956.
2. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G. A correlation clustering

approach to link classification in signed networks. In COLT 2012.
3. Chiang, K., Natarajan, N., Tewari, A., and Dhillon, I. Exploiting longer cycles for

link prediction in signed networks. In 20th CIKM, 2011.
4. Elkin, M., Emek, Y., Spielman, D.A., and Teng, S.-H. Lower-stretch spanning

trees. SIAM Journal on Computing, 38(2):608–628, 2010.
5. Guha, R., Kumar, R., Raghavan, P., and Tomkins, A. Propagation of trust and

distrust. In 13th WWW, pp. 403–412. ACM, 2004.
6. Harary, F. On the notion of balance of a signed graph. Michigan Mathematical

Journal, 2(2):143–146, 1953.
7. Heider, F. Attitude and cognitive organization. J. Psychol, 21:107–122, 1946.
8. Kunegis, J., Lommatzsch, A., and Bauckhage, C. The Slashdot Zoo: Mining a

social network with negative edges. In 18th WWW, 2009.
9. Leskovec, J., Huttenlocher, D., and Kleinberg, J. Signed networks in social media.

In 28th ICHFCS, 2010.
10. Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting positive and negative

links in online social networks. In 19th WWW, 2010.

5 This theoretical comparison is admittedly unfair, as cccc has been designed to work
in a harder setting than p-stochastic. Unfortunately, we are not aware of any other
general active learning scheme for link classification to compare with.

85

Rate-Based Stochastic Fusion Calculus and
Continuous Time Markov Chains?

Gabriel Ciobanu1 and Angelo Troina2

1 Romanian Academy, Institute of Computer Science and “A.I.Cuza” University
2 Dipartimento di Informatica, Università di Torino

1 Introduction

This paper presents a stochastic fusion calculus suitable to describe systems in-
volving general patterns of interactions. We start from fusion calculus [8] which
is a symmetric generalisation of the π-calculus, and present a rate-based stochas-
tic fusion calculus, providing a concise and compositional way to describe the
behaviour of complex systems by using probability distributions.

We provide the semantics of stochastic fusion calculus by using rate-based
transition systems [4] in the elegant and general variant proposed by De Nicola
et al. [2]. The stochastic nature of the new transition systems is given by the fact
that transition labels represent actions, and the transition result is a function
associating a positive real value to each possible target process, expressing the
stochastic rate of an exponential distribution modelling the duration of the tran-
sition. For two processes running in parallel, we define the distribution of their
synchronisation using their apparent rates. Associativity of parallel composition
is a particularly desirable property either in the context of network and dis-
tributed systems, either in the context of biological systems, where parallel com-
position is often used to model molecular populations. Following the approach
proposed in [2], associativity of the parallel composition operator is guaranteed
in the rate-based stochastic semantics of the fusion calculus (differently to what
happens in the stochastic π-calculus [9] and in a previous formalisation of a
stochastic fusion calculus [1]).

We extend the notion of hyperbisimulation to stochastic fusion calculus, and
prove that the stochastic hyperequivalence is a congruence. The rate-based tran-
sition system resulting from a stochastic fusion process leads the expression of a
continuous time Markov chain which preserves the notion of hyperequivalence.

The modelling power of the stochastic fusion calculus is suggested by an
example where we formalise some of the one-to-many interactions occurring
between a plant root and a particular kind of fungi in the arbuscular mycor-
rhizal symbiosis. A quantitative simulation is performed using the PRISM model
checker on the continuous time Markov chain extracted from the rate-based
transition system describing such interactions by means of stochastic fusion pro-
cesses.

? This research has been partially funded by the BioBITs Project (Converging Tech-
nologies 2007, area: Biotechnology-ICT), Regione Piemonte.

86

2 Rate-Based Stochastic Fusion Calculus

The fusion calculus was introduced by Parrow and Victor as a symmetric gener-
alisation of the π-calculus [8]. The π-calculus has two binding operators (prefix
and restriction), the effects of communication are local, and input and output
actions are asymmetric. Unlike the π-calculus, the fusion calculus has only one
binding operator, and the effects of communication are both local and global.
Fusion calculus makes input and output operations fully symmetric: a more ap-
propriate terminology for them might be action and co-action. A fusion is a name
equivalence which allows to use interchangeably all the names of an equivalence
class in a term of the calculus. Computationally, a fusion is generated as the
result of a synchronisation between two complementary actions, and it is prop-
agated to processes running in parallel within the same scope of the fusion. In
practice, the effect of a fusion could be seen as the update of a (global) shared
state. Fusions are suitable to express general patterns of interactions, including
one-to-many and many-to-many interactions. We remind to [8] for details about
the syntax and semantics of the fusion calculus.

Many phenomena which take place in practice are described by non-exponential
distributions, and stochastic fusion calculus could be defined by using general
distributions. For the sake of simplicity, we use here the exponential distribution,
inheriting some properties derived from the memoryless feature of this distribu-
tion: the time at which a state change occurs is independent of the time at which
the last state change occurred. In this way we do not have to keep track of the
past state transitions (e.g. in an implementation).

Following the variant of rate transition systems [4] introduced in [2], we

define the semantics of SFC via a transition relation P
δ−→ ρ associating to a

given process P and a transition action label δ a next state function (NSF)
ρ : SFC → IR≥0.

3 Stochastic Hyperbisimulation

Several papers of the last two decades define Markovian bisimulations, we men-
tion the seminal paper by Larsen and Skou [7]. The definition of stochastic
hyperbisimulation is also related to the notion of lumpability for Markov chains
[5] (also see the next section). Two processes P and Q are lumping equivalent,
and we denote this by P ∼ Q, if the total rate of moving to an equivalence class
S under ∼ is identical for both processes. Lumping equivalence also preserves
stochastic rewards while reducing the size of the underlying stochastic transition
system.

Two processes P and Q are stochastic bisimilar, written P
.∼SH Q, if they are

related by a stochastic bisimulation. Stochastic bisimilarity is not a congruence
in the fusion calculus. We therefore look for the largest congruence included in
the stochastic bisimilarity. This is achieved by closing the definition of stochastic
bisimulation under arbitrary substitutions.

87

Definition 1 (Stochastic Hyperbisimulation). A stochastic hyperbisimula-
tion is an equivalence relation R over SFC satisfying the following properties:

i) R is closed under any substitution σ, i.e., PRQ implies PσRQσ for any σ;
ii) for each pair (P,Q) ∈ R, for all actions δ, and for all equivalence classes

S ∈ SFC/R, we have γδ(P, S) = γδ(Q,S).

Two processes P and Q are stochastic hyperbisimulation equivalent (or stochas-
tic hyperequivalent) if they are related by a stochastic hyperbisimulation. We
write P ∼SH Q.

The following holds.

Theorem 1. (Congruence) Stochastic hyperequivalence is a congruence, i.e.,
for P,Q ∈ SFC and C ∈ SFC[], P ∼SH Q implies C[P] ∼SH C[Q].

4 Stochastic Fusion Processes as CTMCs

We provide a mechanism to translate the rate-based transition system deriving
from the stochastic semantics into a Continuous Time Markov Chain (CTMC),
providing a wide set of means for automatic verification.

By construction, the following holds.

Theorem 2. Stochastic hyperequivalence preserves strong Markovian bisimu-
lation, i.e., for P,Q ∈ SFC, P ∼SH Q implies that the related CTMCs are
Markovian bisimilar.

5 Modelling the Arbuscular Mycorrhizal Symbiosis

The arbuscular mycorrhizal (AM) symbiosis is an example of association with
high compatibility formed between fungi belonging to the Glomeromycota phy-
lum and the roots of most land plants [3]. AM fungi are obligate symbionts, in
the absence of a host plant, spores of AM fungi germinate and produce a limited
amount of mycelium. The recognition between the two symbionts is driven by the
perception of diffusible signals and, once reached the root surface, the AM fungus
enters in the root, overcomes the epidermal layer and it grows inter-and intra-
cellularly all along the root in order to spread fungal structures. Once inside the
inner layers of the cortical cells the differentiation of specialised, highly branched
intracellular hyphae called arbuscules occur. Arbuscules are considered the ma-
jor site for nutrients exchange between the two organisms. The fungus supply the
host with essential nutrients such as phosphate, nitrate and other minerals from
the soil. In return, AM fungi receive carbohydrates derived from photosynthesis
in the host. AM symbiosis also confers resistance to the plant against pathogens
and environmental stresses. The colonisation of the host plant requires the ac-
complishment of two main events: i) signalling and partner recognition, ii) the
colonisation of root tissues and the development of intraradical fungal structures
leading to a functional symbiosis.

88

Fig. 1. The Arbuscular Mycorrhizal symbiosis

The interaction begins with a molecular dialogue between the plant and the
fungus [3]. Host roots release signalling molecules characterised as strigolactones.
Within just a few hours, strigolactones at subnanomolar concentrations induce
alterations in fungal physiology, mitochondrial activity and extensive hyphal
branching (leading the fungal spore to produce hyphae towards the plant root).

The external signal released by AM fungi (called myc factor) is perceived by
a receptor on the plant plasma membrane and is transduced into the cell with
the activation of a symbiotic signalling pathway that lead to the colonisation
process (Pre Penetration Apparatus, PPA).

We model these initial communication between the plant root and AM fungi
with SFC and simulated the resulting CTMC with the PRISM model checker.

An extended report about the work on this paper is available at: http:

//www.di.unito.it/~troina/ictcs12/stocFusion.pdf.

References

1. G. Ciobanu. From Gene Regulation to Stochastic Fusion. LNCS vol.5204, 51-63,
2008.

2. R. De Nicola, D. Latella, M. Loreti, M. Massink. Rate-based Transition Systems
for Stochastic Process Calculi. Proc. ICALP, LNCS vol.5556, 435-446, 2009.

3. J. Harrison. Signaling in the Arbuscular Mycorrhizal Symbiosis. Annu. Rev. Mi-
crobiol., vol.59, 19–42, 2005.

4. B. Klin, V. Sassone. Structural Operational Semantics for Stochastic Process Cal-
culi. Proc. FoSSaCS, LNCS vol.4962, 428-442, 2008.

5. J.G. Kemeny, J.L. Snell. Finite Markov Chains. Springer, 1976.
6. J. Krivine, R. Milner, A. Troina. Stochastic Bigraphs. Proc. MFPS’08, ENTCS,

vol.218, 73-96, 2008.
7. K.G. Larsen, A. Skou. Bisimulation through Probabilistic Testing. Information and

Computation, vol.94, 1-28, 1991.
8. J. Parrow, B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile

Processes. Proc. LICS, IEEE Computer Society, 176-185, 1998.
9. C. Priami. Stochastic π-Calculus. Computer Journal, vol.38, 578-589, 1995.

89

Algebraic Characterization of the Class of
Languages recognized by Measure Only

Quantum Automata

Carlo Comin1,2 and Maria Paola Bianchi1

1Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
2ESTECO, AREA di Ricerca Science Park, Padriciano 99, Trieste, Italy

carlo.comin.86@gmail.com, bianchi@di.unimi.it

Abstract. We study a model of one-way quantum automaton where
only measurement operations are allowed (MOn-1qfa). We give an alge-
braic characterization of LMO(Σ), showing that the syntactic monoids
of the languages in LMO(Σ) are exactly the literal pseudovariety of
J-trivial literally idempotent monoids, where J is the Green’s relation
determined by two-sided ideals. We also prove that LMO(Σ) coincides
with the literal variety of literally idempotent piecewise testable regular
languages. This allows us to prove the existence of a polynomial time
algorithm for deciding whether a regular language belongs to LMO(Σ).

Introduction and preliminaries. This paper gives a characterization of the
class of languages recognized by a model of quantum automata, by using tools
from algebraic theory, in particular, varieties of languages. Many models of one-
way quantum finite automata are present in the literature: the oldest is the
Measure-Once model [2, 5], characterized by unitary evolution operators and a
single measurement performed at the end of the computation. On the contrary,
in other models, evolutions and measurements alternate along the computation
[1, 9]. The model we study is the Measure-Only Quantum Automaton (MOn-
1qfa), introduced in [4], in which we allow only measurement operations, not
evolution. All these quantum models are generalized by Quantum Automata
with Control Language [3].

A MOn-1qfa over the alphabet Σ is a tuple of the form A = 〈Σ ∪ {#},
(Oc)c∈Σ∪{#}, π0, F 〉. The complex m-dimensional vector π0 ∈ C1×m, with uni-
tary norm ||π0|| = 1, is called the quantum initial state of A. For every c ∈ Σ,
Oc ∈ Cm×m is (the representative matrix of) an idempotent Hermitian operator
and denotes an observable. The subset F ⊆ V (O#) of the eigenvalues of O# is
called the spectrum of the quantum final accepting states of A.
The computation dynamics of automaton A is carried out in the following way:
let x = x1 . . . xn ∈ Σ∗, suppose we start from π0, then A measures the system
with cascade observables Ox1

, . . . , Oxn (by applying the associated orthogonal
projectors) and then performs the final measure with the end-word observable
O#, that is the observable of the final accepting states F of A.
This last measure returns, as a result, an eigenvalue r ∈ V (O#), if r ∈ F then we

90

say that the automaton A accepts the word x ∈ Σ∗, otherwise that A does not
accept it. What is remarkable in this computation dynamics, is the probabilis-
tic behavior of the automaton A, that is the probability pA(x) that A accepts
x = x1 · · ·xn. In the specific case of MOn-1qfas it turns out to be of some
interest to express pA(x) using the well-known formalism of quantum density
matrices. We say that a language L is recognized by A with isolated cut point
λ iff for all x ∈ Σ∗ pA(x) > λ⇔ x ∈ L and there exists a constant value δ > 0
such that |pA(x)− λ| ≥ δ.

We now recall some general definitions and results from the algebraic theory
of automata and formal languages. For more details, we refer the reader to, e.g.
[6, 10]. Let L be a regular language and let 〈Σ,Q, δ, q0, F 〉 be the minimal de-
terministic automaton recognizing L. For a word w = σ1 · · ·σn ∈ Σ∗, we define
its variation as VarL(w) = #{0 ≤ k < n | δ(σ1 · · ·σk) 6= δ(σ1 · · ·σk+1)}. We say
that L has finite variation iff supx∈Σ∗VarL(x) < ∞. Using results and similar
techniques as in [4], it is not difficult to show that the class LMO(Σ) of lan-
guages recognized by a MOn-1qfa with isolated cut point is a boolean algebra
of regular languages in Σ∗ with finite variation. We say that a language L ∈ Σ∗
is literally idempotent iff for all x, y ∈ Σ∗ and a ∈ Σ, xa2y ∈ L⇔ xay ∈ L; we
say that L is literally idempotent piecewise testable if and only if it lies in the
boolean closure of the following class of languages: Σ∗a1Σ∗a2Σ∗ · · ·Σ∗akΣ∗, for
a1, a2, . . . , ak ∈ Σ and a1 6= · · · 6= ak. We denote by liId the class of literally
idempotent languages and by liIdPT the class of literally idempotent piecewise
testable languages. For any language L, we call M(L) its syntactic monoid. We
say that a class of finite monoids A is a (literal) pseudovariety if and only if
it is closed under (literal) substructures, homomorphic images and finite direct
products, [8]. Let A be a class of monoids and let Σ be an alphabet. We denote
by VΣ(A) the class of regular languages on Σ having syntactic monoid in A.
Let L,R and J be the Green’s relations determined by left, right and two-sided
ideals, respectively. In this paper we denote by R the pseudovariety of R-trivial
finite monoids and by J the pseudovariety of J-trivial finite monoids. We also
define J as the literal pseudovariety of J-trivial syntactic monoids M(L) such
that the associated morphism φL : Σ∗ → M(L) satisfies the literal idempo-
tent condition φL(σ)φL(σ) = φL(σ), for every σ ∈ Σ. We say that a class of
regular languages V : Σ → 2Σ

∗
is a ∗-variety of Eilenberg if V (Σ) is closed

under boolean operations, right and left quotient, and inverse homomorphism.
Replacing closure under inverse homomorphism by closure under inverse literal
homomorphism, we get the notion of literal variety of languages. A fundamental
result is due to Eilenberg, who showed that there exists a bijection VΣ from the
psuedovarieties of monoids and the ∗-varieties of Eilenberg of formal languages
[10]. In [8], Kĺıma and Polák showed the following

Theorem 1. Let L ⊆ Σ∗ be a formal language. The following propositions are
equivalent: (i) L ∈ liIdPT, (ii) L ∈ VΣ(J) ∩ liId(Σ), and (iii) L ∈ VΣ

(
J
)
.

Results. We give a direct proof that the class of finite variation regular lan-
guages is a ∗-variety of Eilenberg. Moreover, we observe that a regular language

91

L has finite variation if and only if its syntactic monoid is R-trivial. We proceed
further on with our analysis by showing that the class of MOn-1qfa over Σ is
in fact a sub-class of Latvian Automata. This class of automata has been fully
characterized algebraically in [1] as the class of automata recognizing exactly
regular languages having syntactic monoids in the class BG of block groups.

Theorem 2. Let A be a MOn-1qfa on Σ and let LA be a language recognized
by A with cut-point λ isolated by δ. Then there exists a Latvian automaton A′

recognizing LA′ = LA with cut-point λ′ = 1
2 isolated by δ′ = δ

2·max(λ,1−λ) .

This directly implies that LMO(Σ) ⊆ VΣ(BG).
Combining our analysis with the results of [1] on block groups syntactic

monoids and the results of [4] on finite variation languages, we prove the following

Theorem 3. Let L ∈ LMO(Σ) be a language recognized by some MOn-1qfa
with isolated cutpoint. Then its syntactic monoid M(L) is an R-trivial block
group, formally speaking M(L) ∈ BG ∩R.

Since an R-trivial block group is also J-trivial, and since LMO(Σ) is a boolean
algebra, we have LMO(Σ) ⊆ VΣ(J). This, together with Theorem 1 and the
fact that languages in LMO(Σ) are literally idempotent, leads to the following

Theorem 4. LMO(Σ) ⊆ VΣ(J).

We now show how languages in liIdPT can be recognized by MOn-1qfas.
Consider the language L[a1, . . . , ak] = Σ∗a1Σ∗ · · ·Σ∗akΣ∗, where a1, . . . , ak ∈
Σ, ai 6= ai+1 for 1 ≤ i < k, and let S = {a1, . . . , ak}. For every α ∈ S, let #α
be the number of times that α appears as a letter in the word a1a2 · · · ak. Let

j
(α)
1 < j

(α)
2 < · · · < j

(α)
#α be all the indexes such that α = a

j
(α)
1

= . . . = a
j
(α)
#α

. We

define, for every α ∈ S, two orthogonal projectors of dimension (k+ 1)× (k+ 1):

the up operator P
(k)
↗ (α) and the down operator P

(k)
↘ (α), such that

(
P

(k)
↗ (α)

)
rs

=





1 if r = s and ∀ 1 ≤ i ≤ #α it holds r, s /∈ {jαi , jαi + 1},
1
2 if ∃ 1 ≤ i ≤ #α such that r, s ∈ {jαi , jαi + 1},
0 otherwise,

(
P

(k)
↘ (α)

)
rs

=





1
2 if r = s and ∃ 1 ≤ i ≤ #α such that r, s ∈ {jαi , jαi + 1},
− 1

2 if r 6= s and ∃ 1 ≤ i ≤ #α such that r, s ∈ {jαi , jαi + 1},
0 otherwise.

By calling ej the boolean row vector such that (ej)i = 1 ⇔ i = j, we define

A[a1, . . . , ak] = 〈Σ ∪ {#}, π(k)
0 , {O(k)

σ }σ∈Σ∪{#}, F (k)〉 as the MOn-1qfa where

– π
(k)
0 = e1 ∈ C1×(k+1),

– for α ∈ S, the associated projectors of O
(k)
α are P

(k)
↗ (α) and P

(k)
↘ (α),

– with each O
(k)
σ such that σ ∈ Σ \S, we associate the projector I(k+1)×(k+1),

– the projector of the accepting result of O
(k)
is (ek+1)T ek+1, i.e. the (k+1)×

(k + 1) boolean matrix having a 1 only in the bottom right entry.

92

A careful analysis of the behavior of A[a1, . . . , ak] leads to the following

Theorem 5. The automaton A[a1, . . . , ak] recognizes L[a1, . . . , ak] with cutpoint
λ = 1

22k+1 isolated by δ = 1
22(k+1) .

Since the class liIdPT is the boolean closure of languages of the form L[a1, . . . , ak],
and LMO(Σ) is a boolean algebra, Theorem 5 implies that all literally idempo-
tent piecewise testable languages can be recognized by MOn-1qfas. The obser-
vations made up to this point imply our main result:

Theorem 6. LMO(Σ) = VΣ(J) = liIdPT(Σ).

Theorem 6 allows us to prove the existence of a polynomial time algorithm for
deciding LMO(Σ) membership:

Theorem 7. Given a regular language L ∈ Σ∗, the problem of determining
whether L ∈ LMO(Σ) is decidable in time O((|Q|+ |Σ|)2), where |Q| is the size
of the minimal deterministic automaton for L.

This algorithm first constructs the minimal deterministic automaton AL for L in
time O(|Q| log(|Q|)) as shown in [7]. Then, in time O(|Q|), it checks whether L
is literally idempotent by visiting all the vertices in the graph of AL. Finally, it
verifies whether L is piecewise testable in time O((|Q|+|Σ|)2) with the technique
shown in [11]. The fact that LMO(Σ) = liIdPT(Σ) completes the proof.

Acknowledgements: The authors wish to thank Alberto Bertoni for the stim-
ulating discussions which lead to the results of this paper.

References

1. A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thérien, Al-
gebraic Results on Quantum Automata, Theory Comp. Syst., vol. 39(1), (2006),
165-188.

2. A. Bertoni, M. Carpentieri, Regular Languages Accepted by Quantum Automata,
Inf. Comput., vol. 165(2), (2001), 174-182.

3. A. Bertoni, C. Mereghetti, B. Palano, Quantum Computing: 1-Way Quantum Au-
tomata Developments in Language Theory 2003: 1-20

4. A. Bertoni, C. Mereghetti, B. Palano, Trace monoids with idempotent generators
and measure-only quantum automata, Natural Comp., vol. 9(2), (2010), 383-395.

5. A. Brodsky, N. Pippenger, Characterizations of 1-Way Quantum Finite Automata,
SIAM J. Comput., vol. 31(5), (2002), 1456-1478.

6. S. Eilenberg, Automata, languages, and machines, vol. A,B, Academic Press, 1976.
7. J.E. Hopcroft, An N Log N Algorithm for Minimizing States in a Finite Automaton,

Technical Report. Stanford University, Stanford, CA, USA, 1971.
8. O. Kĺıma, L. Polák, On Varieties of Literally Idempotent Languages, ITA 42(3),

(2008), 583-598.
9. A. Kondacs, J. Watrous, On the Power of Quantum Finite State Automata, FOCS

(1997) 66-75.
10. J. E. Pin, Varieties of formal languages, North Oxford, London and Plenum, New-

York, 1986.
11. A.N. Trahtman, Piecewise and Local Threshold Testability of DFA, FCT (2001),

347-358.

93

Efficient algorithms for distributed shortest
paths on power-law networks

Gianlorenzo D’Angelo1, Mattia D’Emidio2, Daniele Frigioni2, and Daniele
Romano2

1 MASCOTTE Project INRIA/I3S(CNRS/UNSA) gianlorenzo.d angelo@inria.fr
2 Dip. di Ingegneria e Scienze dell’Informazione e Matematica, University of L’Aquila
{mattia.demidio,daniele.frigioni}@univaq.it, daniele.romano.vis@gmail.com

1 Introduction

The problem of computing and maintaining shortest paths in a distributed net-
work whose topology dynamically changes is a core functionality of today’s com-
munication networks. The problem has been widely studied in the literature, and
the solutions found can be classified as distance-vector and link-state.

Distance-vector algorithms, as for example the distributed Bellman-Ford
method [6], require that a node knows the distance from each of its neighbors
to every destination and stores them in a data structure called routing table;
a node uses its own routing table to compute the distance and the via to each
destination. The main drawbacks of distance-vector algorithms are the massive
use of communication resources and the well-known looping phenomena.

Link-state algorithms, as e.g. the OSPF protocol used in Internet [7], require
that a node knows the entire network topology to compute its distance to any
destination, usually running Dijkstra’s algorithm. They are free of looping, al-
though each node needs to receive and store up-to-date information about the
entire network topology after a change, thus requiring quadratic space per node.

In the last years, there has been a renewed interest in devising new effi-
cient distance-vector solutions for Large-Scale Ethernet networks, where usually
scalability and reliability are highly desirable properties or where the memory
power of the nodes is limited (see, e.g., [2, 8, 9]). Notwithstanding this increasing
interest, the most interesting distance-vector algorithm is still DUAL (Diffuse
Update ALgorithm) [4], which is free of looping and is part of the CISCO’s
widely used EIGRP protocol, although it requires a high space per node.

In this paper, we present two contributions in this field. First, we describe
LFR (Loop Free Routing) a new loop-free distance vector routing algorithm,
recently proposed in [3], which: (i) from the theoretical point of view, is able to
update the shortest paths of a distributed network in fully dynamic scenarios
using the same message complexity and less space per node than DUAL; (ii)
from the experimental point of view, has been shown to be the best choice, both
in terms of messages sent and space requirements, in networks having a power-
law node degree distribution, a highly important class of networks which includes

94

many currently implemented communication infrastructures, like the Internet,
the WWW, and so on [1]. Second, we introduce DP (Distributed Pruning), a new
general and practical technique which is a generalization of DLP [2]. DP can
be combined with every distance-vector algorithm based on shortest paths with
the aim of overcoming some of their limitations (high number of messages sent,
low scalability, poor convergence) in power-law networks. We give experimental
evidence of the effectiveness of DP, showing that the combination of DP with
DUAL and LFR provides a huge improvement in both the global number of
messages sent and the space occupancy per node wrt DUAL and LFR, resp..

2 Description of LFR

In this section, we describe LFR, introduced in [3]. LFR stores, for each node v,
the estimated distance D[v, s] and the feasible via, VIA[v, s], that is the node which
provides the minimum distance to s and satisfies SNC (Source Node Condition),
a sufficient condition for loop-freedom [4]. In addition, node v maintains for each
s ∈ V , the following data structures: (i) ACTIVE[v, s]: the state of node v wrt
a source s; v is in active state (ACTIVE[v, s] = true), if and only if v is trying
to update VIA[v, s] after a weight increase operation; (ii) UD[v, s]: the distance
from v to s through VIA[v, s]; if v is active then UD[v, s] ≥ D[v, s], otherwise they
coincide. In addition, in order to implement SNC, node v stores a temporary
data structure tempDv which is allocated only when v is active wrt s, and it is
deallocated when v turns passive wrt s. The entry tempDv[u, s] contains UD[u, s],
for each u ∈ N(v).

The algorithm starts when the weight of an edge {xi, yi} changes. As a con-
sequence, xi (yi, resp.) sends to yi (xi, resp.) an update message carrying the
value UD[xi, s] (UD[yi, s], resp.). If an arbitrary node v receives an update mes-
sage from u ∈ N(v), then it performs an update procedure in which, basically,
v compares the received value UD[u, s] + w(u, v) with D[v, s] in order to deter-
mine whether v needs to update its estimated distance and VIA[v, s]. If node v
is active, the processing of the message is postponed by enqueueing it into the
FIFO queue associated to s. Otherwise, if D[v, s] > UD[u, s] +w(u, v), then v sets
D[v, s] = UD[u, s] + w(u, v) and VIA[v, s] = u, while if D[v, s] < UD[u, s] + w(u, v)
and VIA[v, s] = u, node v performs a phase called Local-Computation in which
it sends a get.dist to all its neighbor, except VIA[v, s] = u, in order to know
the corresponding estimated distances to s. Each neighbor u ∈ N(v) replies
with its UD[u, s]. When v receives these values, it tries to compute a new
VIA[v, s], by comparing the received distances with D[v, s]. If this phase suc-
ceeds, node v updates its routing information and propagates the change, Oth-
erwise, node v initiates a distributed phase, named Global-Computation. It sets
UD[v, s] = UD[VIA[v, s], s] + w(v, VIA[v, s]) and sends to all its neighbors, except
VIA[v, s], a get.feasible.dist message, carrying UD[v, s]. A node k ∈ N(v) that re-
ceives such a message first verifies whether VIA[k, s] = v or not. In the first case, it
replies to v with UD[k, s]. In the second case, it performs the Local-Computation
and possibly the Global-Computation, in order to update its routing informa-

95

tion and to reply to v. Note that this distributed phase can involve the whole
network. Finally, if either D[v, s] = UD[u, s]+w(u, v) or D[v, s] < UD[u, s]+w(u, v)
and VIA[v, s] 6= u, the message is discarded and the procedure ends.

If we denote as Φ the total number of nodes affected by a set of updates on
the edges of the network, as φ the maximum number of destinations for which
a node is affected, and as ∆ the maximum node degree of the network, then
LFR requires O(∆ ·Φ) messages and O(n+∆ ·φ) space per node, while DUAL
requires O(∆ · Φ) messages and Θ(∆ · n) space per node.

3 Distributed Pruning

In this section, we introduce DP (Distributed Pruning), a new technique that
can be combined with every distance-vector algorithm, with the aim of reduc-
ing the messages sent and the space occupancy per node of that algorithm on
power-law networks. The idea underlying DP mainly rely on two facts: (i) a
power-law network with n nodes typically has average node degree much smaller
than n and a number of nodes with low degree which is generally high (for ex-
ample, the graphs of the CAIDA IPv4 topology dataset [5] have average degree
approximately equal to n/2000, and a number of nodes with degree smaller than
3 approximately equal to 2n/3); (ii) there are many topological situations in
which nodes with degree smaller than 3 should neither perform nor be involved
in the distributed computation of shortest paths, as they cannot provide any use-
ful information. DP has been designed to improve the performances of a generic
distance-vector algorithm, by exploiting these configurations.

In particular, when applied to a generic distance-vector algorithm, DP forces
the distributed computation to be carried out only by those nodes of the network
which has degree greater than two (central nodes). The non-central nodes receive
updated routing information passively and do not start any kind of distributed
computation. To implement this strategy, DP requires that a generic node stores
and updates information about non-central paths. To this aim, each node v
maintains a data structure, called CHain Path, which is an array containing
one entry CHPv[s], for each central node s, where the list of all edges, with
the corresponding weight, belonging to the non-central paths containing s are
stored. The space overhead induced by the CHain Path is clearly O(n) per node.
However, DP globally induces a reduction in the space occupancy per node, as
the overhead required to store the CHain Path is counterbalanced by a reduction
in the space occupancy per node of the original algorithm, which can avoid to
store some information about non-central nodes.

In order to check the effectiveness of DP, we combined it with DUAL and
LFR by obtaining two new algorithms named DUAL-DP and LFR-DP, resp..
Then, we implemented the four algorithms in OMNeT++3 and performed a pre-
liminary experimental study. As input to the algorithms, we considered instances
similar to the ones used in [2]. We generated a set of different tests, each test con-
sists of a CAIDA graph and a set of k edge updates, where k ∈ {5, 10, . . . , 200}
3 OMNeT++, Discrete event simulation environment: http://www.omnetpp.org.

96

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 20 40 60 80 100 120 140 160 180 200

k

LFR
LFR-DP
DUAL

DUAL-DP

150000

200000

250000

300000

350000

400000

450000

0 20 40 60 80 100 120 140 160 180 200

k

LFR LFR-DP DUAL DUAL-DP

Fig. 1: Number of messages sent (left) and average space occupancy per node in
Bytes (right) of LFR, LFR-DP, DUAL and DUAL-DP on a CAIDA graph
with 8000 nodes subject to a set of k edge updates.

and each edge update consists of multiplying the weight of a randomly selected
edge by a percentage value randomly chosen in [50%, 150%].

Our experiments show that the combinations of DUAL and LFR with
DP provide a huge improvement both in the global number of sent messages
(Fig. 1(left)) and in the space occupancy per node wrt DUAL and LFR, resp..
The reduction in the space occupancy per node is significant both in the average
and in the maximum case. We have noticed improvements also wrt the combi-
nations of DUAL and LFR with DLP ([2]), thus allowing us to state that DP
represents a step forward wrt the results presented in [2].

References

1. R. Albert and A.-L. Barabási. Emergence of scaling in random networks. Science,
286:509–512, 1999.

2. G. D’Angelo, M. D’Emidio, D. Frigioni, and V. Maurizio. A speed-up technique
for distributed shortest paths computation. In ICCSA 2011, volume 6783 of LNCS,
pages 578–593, 2011.

3. G. D’Angelo, M. D’Emidio, D. Frigioni, and V. Maurizio. Engineering a new loop-
free shortest paths routing algorithm. In SEA 2012, volume 7276 of LNCS, pages
123–134, 2012.

4. J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Trans. on Networking, 1(1):130–141, 1993.

5. Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon, M. Luckie,
and K. Claffy. The CAIDA IPv4 routed/24 topology dataset.
http://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml.

6. J. McQuillan. Adaptive routing algorithms for distributed computer networks. Tech-
nical Report BBN Report 2831, Cambridge, MA, 1974.

7. J. T. Moy. OSPF: Anatomy of an Internet routing protocol. Addison-Wesley, 1998.
8. S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed path

computation. IEEE/ACM Trans. on Networking, 18(1):307–319, 2010.
9. C. Zhao, Y. Liu, and K. Liu. A more efficient diffusing update algorithm for loop-

free routing. In 5th Int. Conf. on Wireless Communications, Networking and Mobile
Computing (WiCom09), pages 1–4. IEEE Press, 2009.

97

A complete polynomial λ-calculus

Erika De Benedetti Simona Ronchi Della Rocca

Università degli Studi di Torino
Dipartimento di Informatica

Corso Svizzera 185, 10149 Torino
{debenede,ronchi}@di.unito.it

Abstract. We propose a system of stratified types, inspired by intersec-
tion types but without associativity, which is correct and complete for
polynomial time computations, while typing all the strongly normalizing
terms, so increasing the expressivity w.r.t. the previous proposals.

1 Introduction

This work is in the field of Implicit Computational Complexity. One of the aims
of Implicit Computational Complexity is the design of programming languages
with bounded computational complexity. In fact, guaranteeing and certifying a
limited resources usage is of central importance for various aspects of computer
science. One of the more promising approaches to this aim is based on the use of
lambda-calculus as paradigmatic programming language, and on the design of
type assignment systems for lambda-terms, where types guarantee, besides the
functional correctness, also the desired complexity bound. In this spirit, some
systems characterizing polynomial time complexity have been designed, inspired
by the Light Logics. The problem of these characterizations is that, while the
systems are functionally complete, their expressivity is very small, in the sense
that few algorithms can be coded. In particular, a proper subset of strongly
normalizing terms can be typed.

There are in the literature two characterizations of PTIME through type as-
signments for λ-calculus, DLAL ([2], [3]) based on Light Affine Logic [1], an affine
version of Light Linear Logic [7], and STA [5, 6], based on the Soft Linear Logic
of Lafont [8]. Both these characterizations are correct and complete with respect
to PTIME, namely every typed term reduces to normal form in a number of steps
which is polynomial in its size, and moreover all and only the polynomial func-
tions can be coded by a typed term. However, the completeness in both systems
is functional, not algorithmic, in the sense that for every polynomial function
there is at least one algorithm that can be typed; even though the algorithmic
completeness is undecidable, we would like to design more expressive systems.

2 The system ISTA

Here we propose a type assignment system for λ-calculus, whose types are strat-
ified types, defined as follows.

98

Definition 1. i) The set T of types is defined by the following syntax:

A ::= a | σ(A | ∀a.A (linear types)

σ ::= A | {σ, ..., σ︸ ︷︷ ︸
n

} n > 0 (stratified types)

ii) Let ≡ denote the syntactical equality between (stratified) types. Types will be
considered modulo the following equivalence relation:

A ≡ B⇒ A = B

σ(A = τ (B iff σ = τ and A = B

{σ1, ..., σn} = {τ1, ..., τm} iff ∀σi.∃τj .σi = τj and ∀τj .∃σi.σi = τj

i.e., a stratified type represents a set.
iii) The system ISTA proves judgments of the kind Γ ` M : σ, where Γ is a partial

function associating to variables a linear type or a stratified type {σ1, ..., σn}
for n > 0. {Γ} denotes the basis such that Γ (x) = σ implies {Γ}(x) = {σ}.
The system is defined in Table 1.

x : A ` x : A
(Ax)

Γ ` M : B x 6∈ dom(Γ)

Γ, x : A ` M : B
(w)

Γ, x : σ ` M : B

Γ ` λx.M : σ(B
((I)

Γ1 ` M : σ(A Γ2 ` N : σ Γ1#Γ2

Γ1, Γ2 ` MN : A
((E)

Γ ` M : A a 6∈ FV(Γ)

Γ ` M : ∀a.A (∀I)
Γ ` M : ∀a.B
Γ ` M : B[A/a]

(∀E)

Γ, x1 : A, ..., xn : A ` M : τ

Γx : {A} ` M[x/x1, ..., xn] : τ
(ml)

Γ, x1 : σ1, ..., xn : σn ` M : τ σi not linear

Γ, x : {σ1, ..., σn} ` M[x/x1, ..., xn] : τ
(ms)

Γi ` M : σi n ≥ 1 σi 6= σj

∪i{Γi} ` M : {σ1, ..., σn}
(sp)

Table 1. The ISTA Type Assignment system.

The system is inspired to STA (in Table 2), where the modality ! has been
replaced by the stratification. So, while in STA the multiplexor can contract only
premises with the same type, here the stratification allows to contract also differ-
ent premises, in case of stratified types. In case of linear types the stratification
behaves like the !, and this is essential for typing in an uniform way the data
types, in particular binary numbers. Stratified types allow us to exploit some
good properties of intersection types, for which the intersection is idempotent
and commutative, but not associative.

99

x : A `STA x : A
(Ax)

Θ `STA M : µ x 6∈ domΘ
Θ, x : A `STA M : µ

(w)
Θ, x : µ `STA M : A

Θ `STA λx.M : µ(A
((I)

Θ `STA M : µ(A Ξ `STA N : µ Θ#Ξ

Θ,Ξ `STA MN : A
((E)

Θ `STA M : A a 6∈ FV (Θ)

Θ `STA M : ∀a.A (∀I)

Θ `STA M : ∀a.B
Θ `STA M : B[A/a]

(∀E)
Θ, x1 : µ, . . . , xn : µ `STA M : ν

Θ, x :!µ `STA M[x/x1, ..., xn] : ν
(m)

Θ ` M : µ

!Θ `STA M :!µ
(sp)

Table 2. The STA Type Assignment system.

3 Properties

The system ISTA enjoys the following properties.

Theorem 1. i) Let π : Γ ` M : σ. Then M reduces to normal form in a number
of steps ∈ O(|M|3d), where |M| is the size of M and d is the depth of π, i.e.,
the number of nested applications of rule (sp).

ii) The system ISTA givets type to all and only the strongly normalizing terms.

Observe that these two properties are not in contradiction! So ISTA is more
powerful than STA, which can type a proper subset of strongly normalizing terms.

We represent binary numbers in Church style, so the number w is represented
by w = λs0s1x.si1(...(siblog wc+1

x)...) where ij ∈ {0, 1}, for any w 6= 0, and
0 = λs0s1x.x.
In STA, binary numbers are typed uniformely by the type

W = ∀a.!(a(a)(!(a(a)(a(a

and moreover, w can be given the type

Wn,m = ∀a.!n(a(a)(!m(a(a)(a(a , for all n,m ≥ 1

Observe that the possibility of non uniform typings for binary numbers is
essential to limit the expressivity of the language, in that it does not allow
nesting iterations of functions. Similarly, in ISTA we define types for binary
numbers to be

WIn,m = ∀a.{na(a}n({ma(a}m(a(a , for all n,m ≥ 1

so all Church numerals have in particular the type

WI = ∀a.{a(a}({a(a}(a(a

Let φ : N p −→ N be a function of arity p. Then the term M represents φ in
an untyped setting if and only if Mn1...np = φ(n1, ..., np). In a typed setting, M
needs to satisfy also typing constraints. Namely, in STA it needs to be typed as

x1 :!i1Wj1,k1
, ..., xp :!ipWjpkp `STA Mx1...xp : Wj,k

100

for some j, k, p, jh, kh (1 ≤ h ≤ p).
In ISTA the corresponding typing must be

x1 : σ1, ..., xp : σp ` Mx1...xp : WIh,k

such that, for all i ∈ {1, ..., p}, either σi = WIhi,ki
(so σi is linear), or σ̄i =

{WIhi
1,k

i
1
, ...,WIhi

qi
,ki

qi
}, for some h, k, hi, ki, qi, h

i
r, k

i
r (1 ≤ r ≤ qi).

Following an approach similar to the one in [4], we prove the following result:

Theorem 2. The numerical functions definable in ISTA are all and only the
numerical functions definable in STA.

The consequences of this theorem are interesting and also quite surprising. The
first one is that, as expected, ISTA is sound and complete with respect to PTIME.
But also a further notion of completeness arises. In fact ISTA is polynomially
complete with respect to strongly normalizing terms, i.e., all the numerical poly-
nomial algorithms that can be expressed by a strongly normalizing term can be
typed in it.

References

1. Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions
on Computational Logic, 3(1):137–175, 2002.

2. P. Baillot and K. Terui. Light types for polynomial time computation in lambda-
calculus. In Proceedings of LICS 2004. IEEE Computer Society, pages 266–275,
2004.

3. P. Baillot and K. Terui. Light types for polynomial time computation in lambda
calculus. Information and Computation, 207(1):41–62, 2009.

4. Antonio Bucciarelli, Adolfo Piperno, and Ivano Salvo. Intersection types and
lambda-definability. Mathematical Structures in Computer Science, 13:15–53, 2003.

5. M. Gaboardi and S. Ronchi Della Rocca. A soft type assignment system for λ-
calculus. In Computer Science Logic, 21st International Workshop, CSL 07, 16th
Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007,
Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 253–267.
Springer, 2007.

6. Marco Gaboardi and Simona Ronchi Della Rocca. From light logics to type assigne-
ments: a case study. Logic Journal of the IGPL, Special Issue on LSFA 2007, 17:499
– 530, 2009.

7. J-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204,
1998.

8. Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318(1-2):163–180, 2004.

101

A Formal Model of Asynchronous Broadcast
Communication

Giorgio Delzanno and Riccardo Traverso

DIBRIS, Università di Genova, Italy
{Giorgio.Delzanno,Riccardo.Traverso}@unige.it

We present a mathematical model, called Asynchronous Broadcast Networks
(ABN), of distributed computation based on topology-dependent and asyn-
chronous communication. Our model combines three main features: a graph
representation of a network configuration decoupled from the specification of in-
dividual process behavior, a topology-dependent semantics of synchronization,
the use of local mailboxes to deliver messages to individual nodes. The result-
ing communication layer is similar to that of languages like AWN [9]. As in
other protocol models like ω [16,17] and AHN [5], our main abstraction comes
from considering protocols defined via a communicating finite-state automaton
replicated on each node of the network.

Formally, we consider a finite set Σ of messages, and different disciplines
for handling the mailbox (message buffer), e.g., unordered mailboxes that we
represent as bags over Σ, and ordered mailboxes that we represent as words
over Σ. The initial configuration is any graph in which all the nodes are in the
initial control state and all local buffers are empty. Even if the set of control
states is finite, there are infinitely many possible initial configurations. We next
formalize the above intuition.

A mailbox structure is a tuple M = 〈M, del?, add, del, []〉, where M is a
denumerable set of elements denoting possible mailbox contents on some fixed
finite alphabet Σ, and, for a ∈ Σ and m ∈ M: add(a,m) denotes the mailbox
obtained by adding a to m, del?(a,m) is true if a can be removed from m;
del(a,m) denotes the mailbox obtained by removing a from m when possible,
undefined otherwise. Finally, [] ∈ M denotes the empty mailbox. We call an
element a ofm visible when del?(a,m) = true. The semantics and corresponding
properties change with the type of mailbox considered.

A protocol is defined by a process P = 〈Q,Σ,R, q0〉, where Q is a finite set
of control states, Σ is a finite message alphabet, Act = {τ} ∪ {!!a, ??a | a ∈ Σ},
R ⊆ Q × Act × Q is the transition relation, q0 ∈ Q is an initial control state.
The label τ represents the ability of performing an internal action, while !!a [??a]
represents the ability of broadcasting [receiving] a message a ∈ Σ. Configurations
are undirected Q×M-graphs. A Q×M-graph γ is a tuple 〈V,E, L〉, where V is
a finite set of nodes, E ⊆ V ×V is a finite set of edges (self-loops are forbidden to
model half-duplex communication), and L : V → Q×M is a labeling function.

We use the notation u ∼γ v and say that the vertices u and v are adjacent to
one another in γ. We omit γ, and simply write u ∼ v, when it is made clear by
the context. We use L(γ) to represent the set of labels in γ. The set of all possible

102

configurations is denoted C, while C0 ⊆ C is the set of all initial configurations,
in which nodes always have the same label 〈q0, []〉.

Given the labeling L and the node v s.t. L(v) = 〈q,m〉, we define Ls(v) = q
(state component of L(v)) and Lb(v) = m (buffer component of L(v)). Further-
more, for γ = 〈V,E, L〉 ∈ C, we use Ls(γ) to denote the set {Ls(v) | v ∈ V }.

For M = 〈M, del?, add, del, []〉, an Asynchronous Broadcast Network (ABN)
associated to P is defined by its associated transition system T (P,M) = 〈C,⇒M
, C0〉, where ⇒M⊆ C × C is the transition relation defined next.

For γ = 〈V,E,L〉 and γ′ = 〈V,E, L′〉, γ ⇒M γ′ holds iff one of the fol-
lowing conditions on L and L′ holds: (local) there exists v ∈ V such that
(Ls(v), τ, L

′
s(v)) ∈ R, Lb(v) = L′b(v), and L(u) = L′(u) for each u ∈ V \ {v};

(broadcast) there exists v ∈ V and a ∈ Σ such that (Ls(v), !!a, L
′
s(v)) ∈ R,

Lb(v) = L′b(v) and for every u ∈ V \ {v} if u ∼ v then L′b(u) = add(a, Lb(u))
and Ls(u) = L′s(u), otherwise L(u) = L′(u); (receive) there exists v ∈ V and
a ∈ Σ such that (Ls(v), ??a, L

′
s(v)) ∈ R, del?(a, Lb(v)) is satisfied, L′b(v) =

del(a, Lb(v)), and L(u) = L′(u) for each u ∈ V \ {v}. A local transition only
affects the state of the process that executes it, while a broadcast also adds the
corresponding message to the mailboxes of all the neighbors of the sender. Notice
that broadcast is never blocking for the sender. Receivers can read the message
in different instants. This models asynchronous communication. A reception of a
message a is blocking for the receiver whenever the buffer is empty or the visible
elements are all different from a. If a is visible in the mailbox, the message is
removed and the process moves to the next state.

An execution is a sequence γ0γ1 . . . such that γ0 is an initial configuration,
and γi ⇒M γi+1 for i ≥ 0. We use ⇒∗M to denote the reflexive and transitive
closure of⇒M. Furthermore, we define the set of immediate predecessors of a set
S of configurations as pre(S) = {γ | γ ⇒M γ′, γ′ ∈ S}. We use pre∗ to indicate
the reflexive-transitive closure of pre.

Decision Problems The coverability problem parametric on the mailbox struc-
tureM is defined as follows. Given a protocol P with transition system T (P,M) =
〈C,⇒M, C0〉 and a control state q, the coverability problem COVER(M) states:
are there two configurations γ0 ∈ C0 and γ1 ∈ C such that γ0 ⇒∗M γ1 and
q ∈ Ls(γ1)?

Preliminary Results When local buffers are treated as bags of messages the cov-
erability problem is decidable. For the proof, it is first possible to consider the
restricted case of fully connected topologies. For fully connected topologies, we
can then resort to the theory of well-structured transition systems (wsts) [1,10]
and show that reachability of a given control state can be solved via a symbolic
backward search algorithm. When mailboxes are ordered buffers, we obtain un-
decidability already in the case of fully connected topologies. Indeed, by using
FIFO mailboxes, we give nodes the possibility of recognizing communication
with multiple neighbors with the same role. We cannot use this feature to de-
fine discovery protocols as for the undecidability proof of synchronous broadcast
given in [5], but we can simulate a counter machine by using FIFO mailboxes as

103

circular queues for encoding counters and to block computations which may lead
to incorrect results. The coverability problem becomes decidable when introduc-
ing non-deterministic message losses. We can exploit again the theory of wsts for
this positive result. In an extended model in which a node can test if its mail-
box is empty, we obtain undecidability with unordered bags and fully-connected
topologies. We cannot rely on queues anymore to distinguish bad computations,
but the emptiness test allows us to do it anyway. Detailed proofs of these results
are available in the technical report [6].

Related Work Our analysis completes previous work on verification and expres-
siveness (w.r.t. coverability) of broadcast communication. More specifically, for
synchronous broadcast communication, the coverability problem is decidable for
fully connected graphs [8] and undecidable for arbitrary graphs in the AHN
model of [5]. Broadcast in AHN is topology-dependent. Synchronous communi-
cation is used here to implement a discovery protocol that, by a careful control
of interferences, allows individual nodes to infer precise information about their
vicinity (e.g. the existence of one and only one neighbor with a certain role).
The discovery protocol is a building block for more complex computations. In
this paper we use similar ideas but reductions of different nature to obtain un-
decidability (e.g. we encode counters using mailboxes and not by using linked
structures).

For variations of the synchronous semantics like those proposed in [11], inter-
mittent nodes and non-atomic broadcast, coverability becomes decidable. The
decidability results exploit however different proof techniques. Indeed, coverabil-
ity with intermittent nodes can be decided by using a weaker model than Petri
nets, whereas we need to resort to the theory of wsts with nested data structures
(bags of tuples containing multisets) to show decidability for the unordered case.
There seems to be no direct reduction from one model to the other. Furthermore,
by either introducing ε-transitions or moving to the case of ordered mailboxes
we obtain undecidability of the resulting model. Concerning other models of
broadcast communication, we would like to mention the CBS process calculi by
Prasad [14,15] for fully connected networks with synchronous broadcast commu-
nication, the ω-calculus by Singh et al. [16,17] for fully connected networks with
synchronous broadcast communication, and the model with topology-dependent
broadcast by Ene and Muntean [7]. More recently, a process algebra for dif-
ferent types of communication, including asynchronous broadcast, called AWN,
has been proposed in [9]. Semantics that take into consideration interferences
and conflicts during a transmission have been proposed in [13,12]. Verification
of unreliable communicating FIFO systems have been studied in [2,3]. In [4]
the authors consider different classes of topologies with mixed lossy and perfect
channels [4]. Differently from all the previous works, we consider here coverability
for parametric initial configurations for a distributed model with asynchronous
broadcast. Furthermore, we also consider different policies to handle the message
buffers (bags/queues) and as well as unreliability of the communication media.

Concerning possible refinement of the unordered case, we are currently con-
sidering an extension with identifiers where each node has a unique identifier

104

that can be passed using broadcast messages and compared with equality. The
introduction of the extended semantics with identifiers and value passing and
the formal analysis of the coverability problem is left for an extended version of
the work.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In LICS, pages 313–321, 1996.

2. Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for
programs with unreliable channels. Inf. Comput., 130(1):71–90, 1996.

3. Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Inf. Comput., 124(1):20–31, 1996.

4. Pierre Chambart and Ph. Schnoebelen. Mixing lossy and perfect fifo channels. In
CONCUR, pages 340–355, 2008.

5. Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized ver-
ification of ad hoc networks. In CONCUR, pages 313–327, 2010.

6. Giorgio Delzanno and Riccardo Traverso. On the coverability problem for asyn-
chronous broadcast networks. Technical Report DISI-TR-12-05, Dip. Informatica
e Scienze dell’Informazione, 2012.

7. Cristian Ene and Traian Muntean. A broadcast-based calculus for communicating
systems. In IPDPS, page 149, 2001.

8. Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast
protocols. In LICS, pages 352–359, 1999.

9. Ansgar Fehnker, Rob J. van Glabbeek, Peter Höfner, Annabelle McIver, Marius
Portmann, and Wee Lum Tan. A process algebra for wireless mesh networks. In
ESOP, pages 295–315, 2012.

10. Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

11. Gianluigi Zavattaro Giorgio Delzanno, Arnaud Sangnier. Verification of ad hoc
networks with node and communication failures. In FORTE, 2012.

12. Massimo Merro, Francesco Ballardin, and Eleonora Sibilio. A timed calculus for
wireless systems. Theor. Comput. Sci., 412(47):6585–6611, 2011.

13. Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for wireless systems.
Electr. Notes Theor. Comput. Sci., 158:331–353, 2006.

14. K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program.,
25(2-3):285–327, 1995.

15. K. V. S. Prasad. Broadcasting in time. In COORDINATION, pages 321–338, 1996.
16. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. Query-based model check-

ing of ad hoc network protocols. In CONCUR, pages 603–619, 2009.
17. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for

mobile ad hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

105

h-quasi planar Drawings of Bounded
Treewidth Graphs in Linear Area ⋆

Emilio Di Giacomo1, Walter Didimo1, Giuseppe Liotta1, Fabrizio Montecchiani1

Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia
{digiacomo,didimo,liotta,montecchiani}@diei.unipg.it

Abstract. We study the problem of computing h-quasi planar drawings in lin-
ear area; in an h-quasi planar drawing the number of mutually crossing edges is
bounded by a constant h. We prove that every n-vertex partial k-tree admits a
straight-line h-quasi planar drawing in O(n) area, where h depends on k but not
on n. For specific sub-families of partial k-trees, we present ad-hoc algorithms
that compute h-quasi planar drawings in linear area, such that h is significantly
reduced with respect to the general result.

1 Introduction

Area requirement of graph layouts is a widely studied topic in Graph Drawing and Geo-
metric Graph Theory. Many asymptotic bounds have been proven for a variety of graph
families and drawing styles. One of the most fundamental results in this scenario estab-
lishes that every planar graph admits a planar straight-line grid drawing in O(n2) area
and that this bound is worst-case optimal [5]. This has motivated a lot of work devoted
to discover sub-families of planar graphs that admit planar straight-line drawings in
o(n2) area. Unfortunately, sub-quadratic upper bounds are known only for trees [4] and
outerplanar graphs [6], while super-linear lower bounds are known for series-parallel
graphs [13].

Although planarity is one of the most desirable properties when drawing a graph,
many real-world graphs are in fact non-planar. Furthermore, planarity often imposes
severe limitations on the optimization of the drawing area, which may sometimes be
overcome by allowing either “few” edge crossings or specific types of edge crossings
that do not affect too much the drawing readability. So far, only a few papers have fo-
cused on computing non-planar layouts in sub-quadratic area. Wood proved that every
k-colorable graph admits a non-planar straight-line grid drawing in linear area [15],
which implies that planar graphs admit such a drawing. However, the technique by
Wood does not provide any guarantee on the type and number of edge crossings. More
recently, Angelini et al. provided techniques for constructing poly-line large angle
crossing drawings (LAC drawings) of planar graphs in sub-quadratic area [1]. We recall
that the study of drawings with large angle crossings started in [9].

In this paper we study the problem of computing linear area straight-line drawings
of graphs with controlled crossing complexity, i.e., drawings where some types of edge
⋆ The results presented in this extended abstract are described in a paper accepted for the 38th

International Workshop on Graph Theoretic Concepts in Computer Science.

106

crossings are forbidden. We study h-quasi planar drawings, i.e., drawings with at most
h − 1 mutually crossing edges; this measure of crossing complexity can be regarded as
a sort of planarity relaxation. The combinatorial properties of h-quasi planar drawings
have been widely investigated [12, 14]. The contributions of the paper are as follows:
(i) We prove that every n-vertex partial k-tree (i.e., any graph with bounded treewidth)
admits a straight-line h-quasi planar drawing in O(n) area, where h depends on k but
not on n (Section 3). (ii) For specific sub-families of partial k-trees (outerplanar graphs,
flat series-parallel graphs, and proper simply-nested graphs), we can compute h-quasi
planar drawings in O(n) area with values of h significantly smaller than those obtained
with the general technique (Section 4).

For reasons of space, all the proofs and technicalities are omitted.

2 Preliminaries

A drawing Γ of a graph G maps each vertex v of G to a point pv on the plane, and each
edge e = (u, v) to a Jordan arc connecting pu and pv not passing through any other
vertex; furthermore, any two edges have at most one point in common. If all edges
are mapped to straight-line segments, Γ is called a straight-line drawing of G. If all
vertices are mapped to points with integer coordinates, Γ is called a grid drawing of G.
The bounding box of a straight-line grid drawing Γ is the minimum axis-aligned box
containing the drawing. If the bounding box has side lengths X − 1 and Y − 1, then we
say that Γ is a drawing with area X × Y . A drawing Γ is h-quasi planar if it has less
than h mutually crossing edges. A 3-quasi planar drawing is also called a quasi planar
drawing.

For definitions about track layouts see Dujmović, Pór and Wood [11].
A k-tree, k ∈ N, is defined as follows. The clique of size k is a k-tree; the graph

obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of
size k is also a k-tree. A partial k-tree is a subgraph of a k-tree. A graph has bounded
treewidth if and only if it is a partial k-tree [3].

3 Compact h-quasi Planar Drawings of Partial k-trees

Lemma 1. Let G be a graph with n vertices. If G admits a (c, t)-track layout, then G
admits an h-quasi planar grid drawing in O(t3n) area, where h = c(t − 1) + 1.

Lemma 1 implies that every graph with constant track number admits an h-quasi
planar grid drawing in linear area with h being a constant. Since it is known that partial
k-trees have track number that is constant in n (although depending on k) [10], this
implies that every partial k-tree admits an h-quasi planar grid drawing in linear area
where the value of h does not depend on n. The current best upper bound on the track
number of k-trees is given in [8]. Thus, every k-tree has an hk-quasi planar drawing in
O(n) area with hk ∈ O(1). In order to improve the value of hk, we exploit an algorithm
that computes (2, t)-track layouts of k-trees, whose description is omitted.

107

Theorem 1. Every partial k-tree with n vertices admits an hk-quasi planar grid draw-
ing in O(t3kn) area, where hk = 2tk−1 and tk is given by the following set of equations:

tk = (ck−1,k + 1)tk−1

ck,i = (ck−1,k + 1)(ck−1,i +
ck−1,k

4

i−1∑

j=1

ck−1,j · ck−1,i−j) (i = 1, . . . , k + 1)

ck,k+2 = 0

(1)

with t1 = 2 and c1,1 = 4 and c1,2 = 2.

We can prove that the values of hk given in Theorem 1 are smaller than those ob-
tained by using the track number upper bound in [8]. In particular, every partial 2-tree
(i.e., every series-parallel graph) admits an 11-quasi planar drawing in O(n) area.

4 Improved Bounds for Specific Families of Planar Partial k-trees

It is known that outerplanar graphs are partial 2-trees [3]. We can prove that the value
of h can be reduced from 11 to 3 for outerplanar graphs.

Theorem 2. Every outerplanar graph with n vertices admits a quasi planar grid draw-
ing in O(n) area.

A series-parallel graph, or SP-graph, is flat if it does not contain two nested parallel
components. For an exact definition of flat SP-graphs and decomposition tree see [7].
We lower the value of h for flat SP-graphs from 11 to 5.

Theorem 3. Every flat SP-graph with n vertices admits a 5-quasi planar grid drawing
in O(n) area.

A proper simply-nested graph is a k-outerplanar graph such that the vertices of
levels from 1 to k are chordless cycles [2]. It is known that k-outerplanar graphs have
treewidth at most 3k − 1 [3]. By using the technique of Section 3 we would obtain an
h-quasi planar drawing in linear area with h that would be a function of the number
of levels k. We show that h can be reduced to 3. We remark that proper simply-nested
graphs may require quadratic area if we want a planar drawing.

Theorem 4. Every proper simply-nested graph with n vertices admits a quasi planar
grid drawing in O(n) area.

5 Concluding Remarks and Open Problems

In this paper we studied the problem of computing compact h-quasi planar drawings
of partial k-trees. Indeed, our algorithms can be regarded as drawing techniques that
produce drawings with optimal area and with bounded crossing complexity. This point
of view is particularly interesting in the case of planar graphs. As recalled in the intro-
duction, planar graphs can be drawn with either optimal crossing complexity (i.e., in a

108

planar way), in which case they may require Ω(n2) area [5], or with optimal Θ(n) area
but without any guarantee on the crossing complexity [15]. These two extremal results
naturally raise the following question: is it possible to compute an h-quasi planar draw-
ing of a planar graph in o(n2) area and h ∈ o(n)? In Section 4 we showed that O(n)
area and h ∈ O(1) can be simultaneously achieved for some families of planar graphs.
In fact Lemma 1 combined with some known results can be used to give a positive
answer to the above question even for general planar graphs.

Theorem 5. Every planar graph with n vertices admits a O(log16 n)-quasi planar grid
drawing in O(n log48 n) area.

The results in this paper give rise to several interesting open problems. Among
them: (1) Reducing the value of hk given by Equation 1 for other sub-families of partial
k-trees. (2) Studying whether planar graphs admits h-quasi planar drawings in O(n)
area with h ∈ o(n), possibly h ∈ O(1). (3) Studying h-quasi planar drawings in linear
area and aspect ratio o(n).

References
1. P. Angelini, G. Di Battista, W. Didimo, F. Frati, S.-H. Hong, M. Kaufmann, G. Liotta, and

A. Lubiw. RAC and LAC drawings of planar graphs in subquadratic area. In ECG ’11, pages
125–128, 2011.

2. P. Angelini, G. Di Battista, M. Kaufmann, T. Mchedlidze, V. Roselli, and C. Squarcella. Small
point sets for simply-nested planar graphs. In Proc. of GD 2011, volume 7034 of LNCS, pages
75–85. Springer, 2012.

3. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. TCS, 209(1-2):1–
45, 1998.

4. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward
drawings of binary trees. CGTA, 2:187–200, 1992.

5. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10:41–51, 1990.

6. G. Di Battista and F. Frati. Small area drawings of outerplanar graphs. Algorithmica, 54:25–
53, 2009.

7. E. Di Giacomo. Drawing series-parallel graphs on restricted integer 3D grids. In Proc. of GD
2003, volume 2912 of LNCS, pages 238–246. Springer, 2004.

8. E. Di Giacomo, G. Liotta, and H. Meijer. Computing straight-line 3D grid drawings of graphs
in linear volume. CGTA, 32(1):26 – 58, 2005.

9. W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. TCS,
412(39):5156 – 5166, 2011.

10. V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded tree-width. SIAM
J. on Comp., 34(3):553–579, 2005.

11. V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. DMTCS, 6(2):497–522,
2004.

12. J. Fox and J. Pach. Coloring kk-free intersection graphs of geometric objects in the plane.
In Proc. of SCG ’08, pages 346–354. ACM, 2008.

13. F. Frati. Lower bounds on the area requirements of series-parallel graphs. DMTCS,
12(5):139–174, 2010.

14. A. Suk. k-quasi-planar graphs. In Proc. of GD 2011, volume 7034 of LNCS, pages 266–277.
Springer, 2012.

15. D. R. Wood. Grid drawings of k-colourable graphs. CGTA, 30(1):25 – 28, 2005.

109

Graph Operations on Parity Games and
Polynomial-Time Algorithms?

Christoph Dittmann, Stephan Kreutzer, Alexandru I. Tomescu??

Chair for Logic and Semantics, Technical University Berlin
christoph.dittmann@tu-berlin.de, stephan.kreutzer@tu-berlin.de,

alexandru.tomescu@mailbox.tu-berlin.de

1 Introduction

Parity games (see below) are a type of 2-player games that are studied in the
area of formal verification of systems by model checking. Deciding the winner in
a parity game is polynomial time equivalent to the model checking problem of
the modal µ-calculus (e.g., [3]). Another strong motivation lies in the fact that
the exact complexity of solving parity games is a long-standing open problem,
the currently best known algorithm being subexponential [5]. It is known that
the problem is in the complexity class UP ∩ coUP [4].

In this paper we identify restricted classes of digraphs where the problem is
solvable in polynomial time, following an approach from structural graph theory.
We consider three standard graph operations: the join of two graphs, repeated
pasting along vertices, and the addition of a vertex. Given a class C of digraphs
on which we can solve parity games in polynomial time, we show that the same
holds for the class obtained from C by applying once any of these three operations
to its elements.

These results provide, in particular, polynomial time algorithms for parity
games whose underlying graph is a tournament (i.e., an orientation of a complete
graph), a complete bipartite graph, a block graph, or a block-cactus graph. These
are classes where the problem was not known to be efficiently solvable.

Previous results concerning restricted classes of parity games which are
solvable in polynomial time include classes of bounded tree-width [7], bounded
DAG-width [1], and bounded clique-width [8].

Notation and Preliminaries. A parity game P = (V, V◦, V2, E,Ω) is a
finite directed graph (V,E) with a partitioning of the nodes V = V◦∪V2 equipped
with a priority map Ω : V → N. A play on P starts with a token placed on some
vertex v ∈ V . If v ∈ V◦, Player ◦ moves the token to a successor of v, otherwise
V2 moves it to a successor. If there is no successor, the respective player loses. If
the play continues forever, Player ◦ wins the game if and only if the maximum
priority that appears infinitely often is even.
? We refer the interested reader to the full version [2] of this extended abstract.

?? The third author gratefully acknowledges the support of the European Science
Foundation, activity “Games for Design and Verification”.

110

A positional strategy for Player ◦ is a map ρ : V◦ → V such that ρ(v) is a
successor of v for all v such that v has a successor. We only consider positional
strategies in this paper. A play v = v0, v1, v2, . . . conforms to ρ if vi+1 = ρ(vi)
for all i such that vi ∈ V◦. A strategy ρ is a winning strategy for Player ◦ from
vertex v if every play that starts at v and conforms to ρ is winning for Player ◦.
We call the set of vertices W◦(P) ⊆ V from which Player ◦ has a positional
winning strategy the winning region of Player ◦, similar for W2 and Player 2.
We will write W◦, W2 if the game is clear from the context. Parity games are
positionally determined in the sense that W◦ ∪W2 = V and W◦ ∩W2 = ∅ [3].

Given A ⊆ V , we denote by P ∩A the parity game restricted to the vertices
in A, that is, (V ∩A, V◦ ∩A, V2 ∩A,E ∩ (A×A), Ω �A). Similarly, P \A stands
for the game P ∩ (V \ A). Given a class of parity games C, we say that C is
hereditary if for all P ∈ C and all subsets A of vertices of P , we have P ∩A ∈ C.
If i ∈ {◦,2}, we denote by i the element of {◦,2} \ {i}.

2 Tournaments and Joins of Digraphs
We start by describing a polynomial-time algorithm for solving parity games on
tournaments. In doing so, we observe that our algorithm can handle more general
parity games. In particular, it can handle games with the sole requirement that
between every vertex of Player ◦ and every vertex of Player 2 there is an arc.
This technique will then be generalized so that, as a very specific case, we obtain
that parity games are solvable in polynomial-time on any biorientation of a
complete bipartite graph. A biorientation of an undirected graph G is a directed
graph G′ with the same nodes as G such that for every edge {x, y} ∈ E(G), the
graph G′ contains the arc (x, y), (y, x), or both.

We note that this result is not a special case of Obdržálek’s polynomial
time algorithm [8] for parity games of bounded directed clique-width because
biorientations of complete graphs or complete bipartite graphs do not have
bounded directed clique-width although their underlying undirected graphs have
bounded clique-width.

We say that a digraph D = (V,E), with a partition of its vertices V = V◦∪V2,
is a weak tournament if between every two vertices v ∈ V◦, w ∈ V2 we have that
(v, w) ∈ E or (w, v) ∈ E (or both).

In Algorithm 1 on the next page, the function Solve-Single-Player-Game
solves single-player games in polynomial time (see [3]). We denote by attri(A)
the set of vertices in V from which Player i has a strategy to enter A at least
once and call it the i-attractor set of A. This notion is well-known [3] and stands
at the basis of the exponential-time algorithms of McNaughton [6] and Zielonka
[9].
Theorem 1. Algorithm 1 correctly computes the winning regions of a parity
game P = (V, V◦, V2, E,Ω) on a weak tournament and runs in time O(|V |4).

Theorem 1 can be generalized to handle larger collections of digraphs, as long
as the property that one of the winning regions induces a digraph on which we
can efficiently solve parity games is maintained.

111

Algorithm 1: An algorithm for solving parity games on weak tournaments
Solve(P = (V, V◦, V2, E,Ω))

(A◦, A2) ← Solve-Single-Player-Game(P ∩ V◦)
if A◦ 6= ∅ then (W◦,W2)← Solve(P \A◦); return (W◦ ∪A◦,W2)
(B◦, B2) ← Solve-Single-Player-Game(P ∩ V2)
if B2 6= ∅ then (W◦,W2)← Solve(P \B2); return (W◦,W2 ∪B2)
d←Maximum-Priority(Ω)
i← ◦ if d is even, 2 otherwise
(C◦, C2) ← Solve(P \ attri(Ω−1(d)))
if Ci 6= ∅ then return (Wi ← ∅, Wi ← V)

else return (Wi ← V , Wi ← ∅)

If P = (V, V◦, V2, E,Ω) and P ′ = (V ′, V ′◦, V ′2, E′, Ω′) are two parity games
with V ∩ V ′ = ∅, we say that parity game P ′′ = (V ′′, V ′′◦ , V ′′2 , E′′, Ω′′) is a join
of P and P ′ (see Figure 1) if

– V ′′ = V ∪ V ′, V ′′◦ = V◦ ∪ V ′◦, V ′′2 = V2 ∪ V ′2,
– E′′ = E ∪ E′ ∪ E∗, where E∗ ⊆ (V × V ′) ∪ (V ′ × V) contains at least one

arc (x, y) or (y, x) for all x ∈ V , y ∈ V ′,
– and the vertices of P ′′ have the same priorities as they have in P and P ′.

Given two classes of parity games C and C′, we denote by Join(C, C′) the class
Join(C, C′) := {P ′′ | P ′′ is a join of P ∈ C and P ′ ∈ C′}.

Theorem 2. If C and C′ are hereditary classes of parity games that we can
solve in polynomial time, then there is an algorithm for solving parity games in
polynomial time on all games P ′′ ∈ Join(C, C′), assuming a decomposition of P ′′
as a join of P ∈ C and P ′ ∈ C′ is given.

3 Pasting of Parity Games and Adding a Single Vertex

Let P, P ′ be two parity games on disjoint vertex sets and let v and v′ be vertices
of P and P ′, respectively. Assume that v, v′ have the same priority and belong
to the same player. We say that a game P ′′ is obtained by pasting P, P ′ at v, v′
if P ′′ is the disjoint copy of P and P ′ with v, v′ identified (see Figure 1). Given
a class of parity games C, we denote by P (C) the class of games obtained by
repeated pasting of a finite number of games from C.

Theorem 3. If C is a hereditary class of parity games that can be solved in
polynomial time, then there is a polynomial time algorithm for solving parity
games in P (C).

As a corollary of Theorems 1 and 3, we can solve parity games in polynomial
time on any orientation of a block-cactus graph, that is, a graph whose maximal
2-connected components are cliques or cycles.

Our last result states that if P is a parity game and v a vertex such that
P \ {v} can be solved in polynomial time, then we can solve P in polynomial

112

join−−→ paste−−−→

Fig. 1. The join and paste operations. The dashed lines represent necessary edges.

time. More formally, if C is a class of parity games, then C+ is the class obtained
by adding a single vertex to every graph in C in any possible way.

Theorem 4. If C is a hereditary class of games such that the decision problem
(i.e., P ∈ C?) is in polynomial time and games in C are solvable in polynomial
time, then games in C+ are solvable in polynomial time.

This theorem implies, for example, that if parity games can be solved in
polynomial time on planar graphs, then they can also be solved in polynomial
time on apex graphs, which are planar graphs with one additional vertex.

4 Conclusions

We have presented some graph operations that preserve the solvability of parity
games in polynomial time. Generalizing this approach to more graph operations
that generate larger classes of graphs is a possible line of future research.

References
1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games.

In: STACS. LNCS, vol. 3884, pp. 524–536. Springer (2006)
2. Dittmann, C., Kreutzer, S., Tomescu, A.I.: Graph operations on parity games and

polynomial-time algorithms. pre-print arXiv:1208.1640 (2012)
3. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A

Guide to Current Research, LNCS, vol. 2500. Springer (2002)
4. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.

Lett. 68(3), 119–124 (1998)
5. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm

for solving parity games. In: SODA ’06. pp. 117–123 (2006)
6. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic

65(2), 149–184 (1993)
7. Obdržálek, J.: Fast Mu-Calculus Model Checking when Tree-Width Is Bounded. In:

CAV ’03. LNCS, vol. 2725, pp. 80–92. Springer (2003)
8. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.)

CSL ’07. LNCS, vol. 4646, pp. 54–68. Springer (2007)
9. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

113

A Characterization of Bispecial Sturmian Words
(extended abstract)

Gabriele Fici

I3S, CNRS & Université Nice Sophia Antipolis, France
fici@i3s.unice.fr

Abstract. We show that bispecial Sturmian words are exactly the maxi-
mal internal factors of Christoffel words. This result is an extension of the
known relation between central words and primitive Christoffel words.
Our characterization allows us to give an enumerative formula for bispe-
cial Sturmian words.

1 Introduction

Sturmian words are non-periodic infinite words of minimal factor complexity.
They are characterized by the property of having exactly n+ 1 distinct factors
of length n for every n ≥ 0 (and therefore are binary words) [5]. The set St
of finite factors of Sturmian words coincides with the set of binary balanced
words, i.e., binary words having the property that any two factors of the same
length have the same number of occurrences of each letter up to one. If one
considers extendibility within the set St, one can define left special Sturmian
words (resp. right special Sturmian words) [4] as those words w over the alphabet
Σ = {a, b} such that aw and bw (resp. wa and wb) are both Sturmian words. The
Sturmian words that are both left special and right special are called bispecial
Sturmian words. They are of two kinds: strictly bispecial Sturmian words, that
are the words w such that awa, awb, bwa and bwb are all Sturmian words, or
weakly bispecial Sturmian words otherwise. Strictly bispecial Sturmian words
have been deeply studied (see for example [2, 4]) because they play a central
role in the theory of Sturmian words. They are also called central words. Weakly
bispecial Sturmian words, instead, received less attention.

One important field in which Sturmian words arise naturally is discrete geom-
etry. Indeed, Sturmian words can be viewed as digital approximations of straight
lines in the Euclidean plane. It is known that given a point (p, q) in the discrete
plane Z × Z, with p, q > 0, there exists a unique path that approximates from
below (resp. from above) the segment joining the origin (0, 0) to the point (p, q).
This path, represented as a concatenation of horizontal and vertical unitary seg-
ments, is called the lower (resp. upper) Christoffel word associated to the pair
(p, q). If one encodes horizontal and vertical unitary segments with the letters a
and b respectively, a lower (resp. upper) Christoffel word is always a word of the
form awb (resp. bwa), for some w ∈ Σ∗. If (and only if) p and q are coprime, the
associated Christoffel word is primitive (that is, it is not the power of a shorter

114

word). It is known that a word w is a strictly bispecial Sturmian word if and
only if awb is a primitive lower Christoffel word (or, equivalently, if and only
if bwa is a primitive upper Christoffel word). As a main result of this paper,
we show that this correspondence holds in general between bispecial Sturmian
words and Christoffel words. That is, we prove (in Theorem 2) that w is a bispe-
cial Sturmian word if and only if there exist letters x, y in {a, b} such that xwy
is a Christoffel word. This characterization allows us to prove an enumerative
formula for bispecial Sturmian words (Corollary 1).

2 Sturmian words and Christoffel words

A finite word w over Σ = {a, b} is Sturmian if and only if for any u, v ∈ Fact(w)
such that |u| = |v| one has ||u|a − |v|a| ≤ 1. We let St denote the set of finite
Sturmian words.

Let w be a finite Sturmian word. The following definitions are in [4].

Definition 1. A word w ∈ Σ∗ is a left special (resp. right special) Sturmian
word if aw, bw ∈ St (resp. if wa,wb ∈ St). A bispecial Sturmian word is a
Sturmian word that is both left special and right special. Moreover, a bispecial
Sturmian word is strictly bispecial if awa, awb, bwa and bwb are all Sturmian
word; otherwise it is non-strictly bispecial.

We let LS, RS, BS, SBS and NBS denote, respectively, the sets of left spe-
cial, right special, bispecial, strictly bispecial and non-strictly bispecial Sturmian
words.

The following lemma is a reformulation of a result of de Luca [3].

Lemma 1. Let w be a word over Σ. Then w ∈ LS (resp. w ∈ RS) if and only
if w is a prefix (resp. a suffix) of a word in SBS.

Given a bispecial Sturmian word, the simplest criterion to determine if it is
strictly or non-strictly bispecial is provided by the following nice characterization
[4]:

Proposition 1. A bispecial Sturmian word is strictly bispecial if and only if it
is a palindrome.

Using the results in [4], one can derive the following classification of Sturmian
words with respect to their extendibility.

Proposition 2. Let w be a Sturmian word. Then:

– |ΣwΣ ∩ St| = 4 if and only if w is strictly bispecial;
– |ΣwΣ ∩ St| = 3 if and only if w is non-strictly bispecial;
– |ΣwΣ∩St| = 2 if and only if w is left special or right special but not bispecial;
– |ΣwΣ ∩ St| = 1 if and only if w is neither left special nor right special.

We now recall the definition of central word [4].

115

Definition 2. A word over Σ is central if it has two coprime periods p and q
and length equal to p+ q − 2.

We have the following remarkable result [4]:

Proposition 3. A word over Σ is a strictly bispecial Sturmian word if and only
if it is a central word.

Another class of finite words, strictly related to the previous ones, is that of
Christoffel words.

Definition 3. Let n > 1 and p, q > 0 be integers such that p+ q = n. The lower
Christoffel word wp,q is the word defined for 1 ≤ i ≤ n by

wp,q[i] =




a if iq mod(n) > (i− 1)q mod(n),

b if iq mod(n) < (i− 1)q mod(n).

If one draws a word in the discrete grid Z × Z by encoding each a with a
horizontal unitary segment and each b with a vertical unitary segment, the lower
Christoffel word wp,q is in fact the best grid approximation from below of the
segment joining (0, 0) to (p, q), and has slope q/p, that is, |w|a = p and |w|b = q.

Analogously, one can define the upper Christoffel word w′p,q by

w′p,q[i] =




a if ip mod(n) < (i− 1)p mod(n),

b if ip mod(n) > (i− 1)p mod(n).

Of course, the upper Christoffel word w′p,q is the best grid approximation from
above of the segment joining (0, 0) to (p, q).

The next result follows from elementary geometrical considerations.

Lemma 2. For every pair (p, q) the word w′p,q is the reversal of the word wp,q.

If (and only if) p and q are coprime, the Christoffel word wp,q intersects
the segment joining (0, 0) to (p, q) only at the end points, and is a primitive
word. Moreover, one can prove that wp,q = aub and w′p,q = bua for a palindrome
u. Since u is a bispecial Sturmian word and it is a palindrome, u is a strictly
bispecial Sturmian word (by Proposition 1). Conversely, given a strictly bispecial
Sturmian word u, u is a central word (by Proposition 3), and therefore has two
coprime periods p, q and length equal to p+ q− 2. Indeed, it can be proved that
aub = wp,q and bua = w′p,q. The previous properties can be summarized in the
following theorem (cf. [1]):

Theorem 1. SBS = {w | xwy is a primitive Christoffel word, x, y ∈ Σ}.
If instead p and q are not coprime, then there exist coprime integers p′, q′ such

that p = rp′, q = rq′, for an integer r > 1. In this case, we have wp,q = (wp′,q′)
r,

that is, wp,q is a power of a primitive Christoffel word. Hence, there exists a
central Sturmian word u such that wp,q = (aub)r and w′p,q = (bua)r. So, we
have:

116

Lemma 3. The word xwy, x 6= y ∈ Σ, is a Christoffel word if and only if
w = (uyx)nu, for an integer n ≥ 0 and a central word u. Moreover, xwy is a
primitive Christoffel word if and only if n = 0.

Recall from [3] that the right (resp. left) palindromic closure of a word w is
the (unique) shortest palindrome w(+) (resp. w(−)) such that w is a prefix of
w(+) (resp. a suffix of w(−)).

Lemma 4. Let xwy be a Christoffel word, x, y ∈ Σ. Then w(+) and w(−) are
central words.

Theorem 2. BS = {w | xwy is a Christoffel word, x, y ∈ Σ}.
Proof. (Sketch) Let xwy be a Christoffel word, x, y ∈ Σ. Then, by Lemma 3,
w is of the form w = (uyx)nu, n ≥ 0, for a central word u. By Lemma 4, w
is a prefix of the central word w(+) and a suffix of the central word w(−), and
therefore, by Lemma 1 and Proposition 3, w is a bispecial Sturmian word.

Conversely, let w be a bispecial Sturmian word. If w is strictly bispecial, then
w is a central word by Proposition 3, and xwy is a (primitive) Christoffel word
by Theorem 1. So suppose w ∈ NBS. By Lemma 3, it is enough to prove that w
is of the form w = (uyx)nu, n ≥ 1, for a central word u and letters x 6= y. This
can be proven by contradiction using the property of balanceness of Sturmian
words. ut

3 Enumeration of bispecial Sturmian words

It is known [4] that SBS(n) = φ(n+2). Therefore, in order to find an enumerative
formula for bispecial Sturmian words, we only have to enumerate the non-strictly
bispecial Sturmian words. We do this in the next proposition.

Proposition 4. For every n > 1, one has

NBS(n) = 2 (n+ 1− φ(n+ 2))

Corollary 1. For every n ≥ 0, there are 2(n+ 1)−φ(n+ 2) bispecial Sturmian
words of length n.

References

1. J. Berstel and A. de Luca. Sturmian Words, Lyndon Words and Trees. Theoret.
Comput. Sci., 178(1-2):171–203, 1997.

2. A. Carpi and A. de Luca. Central Sturmian Words: Recent Developments. In
Developments in Language Theory, 9th International Conference, DLT 2005, volume
3572 of Lecture Notes in Comput. Sci., pages 36–56. Springer, 2005.

3. A. de Luca. Sturmian Words: Structure, Combinatorics, and Their Arithmetics.
Theoret. Comput. Sci., 183(1):45–82, 1997.

4. A. de Luca and F. Mignosi. Some combinatorial properties of Sturmian words.
Theoret. Comput. Sci., 136(2):361–385, 1994.

5. M. Morse and G. A. Hedlund. Symbolic dynamics II: Sturmian Trajectories. Amer.
J. Math., 62:1–42, 1940.

117

Words with the Smallest Number
of Closed Factors

Gabriele Fici1 and Zsuzsanna Lipták2

1 I3S, CNRS & Université Nice Sophia Antipolis, France, gabriele.fici@unice.fr
2 Università di Verona, Italy, zsuzsanna.liptak@univr.it

Abstract. A word is closed if it contains a factor that occurs both as a
prefix and as a suffix but does not have internal occurrences. We show
that any word of length n contains at least n+1 closed factors (i.e., factors
that are closed words). We investigate the language L of words over the
alphabet {a, b} containing exactly n + 1 closed factors. We show that a
word belongs to L if and only if its closed factors and its palindromic
factors coincide (and therefore the words in L are rich words). We also
show that L coincides with the language of conjugates of words in a∗b∗.

Keywords: Closed word, closed factor, rich word, bitonic word.

1 Introduction

A word is a finite sequence of elements from a finite set Σ. We refer to the
elements of Σ as letters and to Σ as the alphabet. The i-th letter of a word w is
denoted by wi. Given a word w = w1w2 · · ·wn, with wi ∈ Σ for 1 ≤ i ≤ n, the
nonnegative integer n is the length of w, denoted by |w|. The empty word has
length zero and is denoted by ε. The set of all words over Σ is denoted by Σ∗.
Any subset of Σ∗ is called a language.

A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a
suffix of a prefix) of w. The set of prefixes, suffixes and factors of the word w
are denoted by Pref(w), Suff(w) and Fact(w) respectively. A border of a word w
is any word in Pref(w)∩ Suff(w) different from w. From the definitions, we have
that ε occurs as a prefix, suffix and factor in any word. An occurrence of a factor
u in a word w is a pair of positions (i, j) such that wi . . . wj = u. An occurrence
is internal if i > 1 and j < |w|.

The word w̃ = wnwn−1 · · ·w1 is called the reversal (or mirror image) of w.
A palindrome is a word w such that w̃ = w. In particular, the empty word is
a palindrome. A conjugate of a word w is any word of the form vu such that
uv = w, for some u, v ∈ Σ∗. A conjugate of a word w is also called a rotation of
w.

Let w be a word. We denote by PAL(w) the set of factors of w that are
palindromes. Droubay, Justin and Pirillo showed [4] that for any word w of length
n, one has |PAL(w)| ≤ n + 1. Consequently, w is called rich [6] (or full [1]) if

118

|PAL(w)| = n + 1, that is, if it contains the largest number of palindromes a
word of length n can contain.

A language L is called factorial if L = Fact(L), i.e., if L contains all the
factors of its words. A language L is extendible if for every word w ∈ L, there
exist letters a, b ∈ Σ such that awb ∈ L. The language of rich words over a fixed
alphabet Σ is an example of factorial and extendible language.

We now recall the definition of closed word [5]:

Definition 1. A word w is closed if it is empty or has a factor occurring exactly
twice in w, as a prefix and as a suffix of w.

The word aba is closed, since its factor a appears only as a prefix and as
a suffix. The word abaa, instead, is not closed. Note that for any letter a ∈ Σ
and for any n > 0, the word an is closed, an−1 being a factor occurring only as
a prefix and as a suffix in it. More generally, any word w that is a power of a
shorter word, i.e., w = vn for a non-empty v and n > 1, is closed.

There exist closed words that are not palindromes, for example the word
abab. Conversely, there exist palindromes that are not closed, but it is worth
noticing that a shortest palindrome over a two-letter alphabet that is not closed
has length 14. An example is aabbabaababbaa.

Remark 1. The notion of closed word is closely related to the concept of complete
return to a factor, as considered in [6]. A complete return to the factor u in a
word w is any factor of w having exactly two occurrences of u, one as a prefix
and one as a suffix. Hence w is closed if and only if it is a complete return to
one of its factors; such a factor is clearly both the longest repeated prefix and
the longest repeated suffix of w (that is, the longest border of w). The notion
of closed word is also equivalent to that of periodic-like word [3]. A word w is
periodic-like if its longest repeated prefix does not have two occurrences in w
followed by different letters.

Observation 1 Let w be a non-empty word over Σ. The following characteri-
zations of closed words follow easily from the definition:

1. w has a factor occurring exactly twice in w, as a prefix and as a suffix of w;
2. the longest repeated prefix of w does not have internal occurrences in w, that

is, occurs in w only as a prefix and as a suffix;
3. the longest repeated suffix of w does not have internal occurrences in w, that

is, occurs in w only as a suffix and as a prefix;
4. the longest repeated prefix of w does not have two occurrences in w followed

by different letters;
5. the longest repeated suffix of w does not have two occurrences in w preceded

by different letters;
6. w has a border that does not have internal occurrences in w;
7. the longest border of w does not have internal occurrences in w;
8. w is the complete return to its longest prefix;
9. w is the complete return to its longest border.

For more details on closed words and related results cf. [3, 2, 5].

119

2 Closed factors

Let w be a word. A factor of w that is a closed word is called a closed factor of
w. The set of closed factors of the word w is denoted by C(w).

Lemma 1. For any non-empty word w of length n, one has |C(w)| ≥ n+ 1.

Lemma 2. Let u, v be non-empty words. Then |C(u)|+ |C(v)| ≤ |C(uv)|+ 1.

Proposition 1. Let w be a non-empty word of length n. If C(w) ⊆ PAL(w),
then C(w) = PAL(w) and |C(w)| = |PAL(w)| = n+ 1. In particular, w is a rich
word.

Bucci et al. showed [2, Proposition 4.3] that a word w is rich if and only if
every closed factor v of w has the property that the longest palindromic prefix
(or suffix) of v is unrepeated in v. Moreover, if w is a palindrome, then it is rich
if and only if PAL(w) ⊆ C(w) [2, Corollary 5.2].

In Section 4, we shall prove that the condition PAL(w) = C(w) characterizes
the words having the smallest number of closed factors over a binary alphabet.

3 Words with the smallest number of closed factors

By Lemma 1, we have that n+1 is a lower bound on the number of closed factors
of a word of length n > 0. We introduce the following definition:

Definition 2. A word w ∈ Σ∗ is C-poor if |C(w)| = |w|+ 1. We also set

LΣ = {w ∈ Σ∗ : |C(w)| = |w|+ 1}

the language of C-poor words over the alphabet Σ.

Remark 2. If |Σ| = 1, then LΣ = Σ∗. So in what follows we will suppose |Σ| ≥ 2.

Lemma 3. The language LΣ is closed under reversal.

Lemma 4. Let w be a C-poor word over the alphabet Σ and x ∈ Σ. The word
wx (resp. xw) is C-poor if and only if it has a unique suffix (resp. prefix) that
is closed and is not a factor of w.

Proposition 2. A word w ∈ Σ∗ belongs to LΣ if and only if every factor of w
belongs to LΣ. That is, LΣ is a factorial language.

4 Binary words

In this section, we fix the alphabet Σ = {a, b}. For simplicity of exposition, we
will denote the language of C-poor words over {a, b} by L rather than by L{a,b}.
We first recall the definition of bitonic word.

120

Definition 3. A word w ∈ {a, b}∗ is bitonic if it is a conjugate of a word in
a∗b∗, i.e., if it is of the form aibjak or biajbk for integers i, j, k ≥ 0.

The following lemma, the proof of which is straightforward, relates bitonic
words to closed factors.

Lemma 5. If a word w ∈ {a, b}∗ does not contain any complete return to ab or
ba as a factor, then it is bitonic.

Lemma 6. Let w be a bitonic word. Then C(w) ⊆ PAL(w).

Thus, by Proposition 1, any bitonic word w of length n > 0 contains exactly
n+ 1 closed factors and so is a C-poor word. In the rest of the section we shall
prove the converse, that is, we shall prove that if w is a C-poor word over {a, b},
then w is bitonic.

Consider the word w = abab. The word w does not belong to L, since it has
6 closed factors, namely ε, a, b, aba, bab and abab. In fact, it has two suffixes
(bab and abab) that are closed and do not appear before in w, and hence by
Proposition 2 it cannot belong to L. More generally, any word u such that u is
the complete return to ab or ba does not belong to L for the same reason. So,
using Proposition 2, we get:

Lemma 7. If w ∈ L, then w does not contain any complete return to ab or ba
as a factor.

We summarize the characterizations of L in the following theorem:

Theorem 1. Let w ∈ {a, b}∗. The following are equivalent:

1. w ∈ L;
2. C(w) = PAL(w);
3. C(w) ⊆ PAL(w);
4. w is a bitonic word;
5. w does not contain any complete return to ab or ba.

Proof. 1)⇒ 5) by Lemma 7; 5)⇒ 4) by Lemma 5; 4)⇒ 3) by Lemma 6; finally,
3)⇒ 2) and 2)⇒ 1) by Proposition 1. ut

So, by Theorem 1 and Proposition 1, every word in L is rich. Notice that
there exist rich words that are not in L, for example the word w = abab, which
has 6 closed factors, namely ε, a, b, aba, bab and abab. Another consequence
of Theorem 1 is that L is extendible, since the language of bitonic words is
clearly extendible. Thus, the language L is a factorial and extendible subset of
the language of (binary) rich words.

It further follows from Theorem 1 that L is a regular language, since the
language of the conjugates of words of a regular language is regular [7]. In the
following proposition we exhibit a closed enumerative formula for the language
L.

121

Proposition 3. For every n > 0, there are exactly n2 − n+ 2 distinct words in
L.

Proof. Each of the n− 1 words of length n > 0 in a+b+ has n distinct rotations,
while for the words an and bn all the rotations coincide. Thus, there are n(n−
1) + 2 bitonic words of length n, and the statement follows from Theorem 1.

5 Conclusion and open problems

In this paper we studied words with the smallest number of closed factors, which
we referred to as C-poor words. We gave some interesting characterizations in
the case of a binary alphabet. In particular, we showed that the language of
binary C-poor words coincides with the language of bitonic words. A natural
direction of further investigation is finding a characterization for C-poor words
over alphabets larger than 2.

An enumerative formula for rich words is not known, not even in the binary
case. A possible approach to this problem is to separate rich words in subclasses
to be enumerated separately. Our enumerative formula for C-poor words given
in Proposition 3 constitutes a step in this direction.

References

1. S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer. On the palindromic complexity
of infinite words. Internat. J. Found. Comput. Sci., 15:293–306, 2004.

2. M. Bucci, A. de Luca, and A. De Luca. Rich and Periodic-Like Words. In DLT
2009, 13th International Conference on Developments in Language Theory, volume
5583 of Lecture Notes in Comput. Sci., pages 145–155. Springer, 2009.

3. A. Carpi and A. de Luca. Periodic-like words, periodicity and boxes. Acta Inform.,
37:597–618, 2001.

4. X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some constructions
of de Luca and Rauzy. Theoret. Comput. Sci., 255(1-2):539–553, 2001.

5. G. Fici. A Classification of Trapezoidal Words. In WORDS 2011, 8th International
Conference on Words, number 63 in Electronic Proceedings in Theoretical Computer
Science, pages 129–137, 2011.

6. A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European
J. Combin., 30:510–531, 2009.

7. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2001.

122

Time Modalities over Many-valued Logics

Nicholas Fiorentini1, Achille Frigeri1, Liliana Pasquale2, and Paola Spoletini3

1 Politecnico di Milano
fiorentini@studenti.polimi.it,achille.frigeri@polimi.it

2 University of Limerick liliana.pasquale@lero.ie
3 Università dell’Insubria paola.spoletini@uninsubria.it

1 Introduction

Model checking has been traditionally concerned on verifying a (critical) system
against its specification, which is generally expressed in temporal logic. Despite
this verification technique is mature, it becomes useless when the specification
incorporates vagueness, especially for the temporal constraints. This is often the
case when non-critical adaptive systems are considered. These systems may tol-
erate small violations or may need to be aware of the satisfaction degree of their
specification for re-configuration purposes. We present FTL (Fuzzy-time Tem-
poral Logic), an extension of LTL that relaxes the notion of time, and propose a
verification technique to evaluate the truth degree of such vague temporal prop-
erties. Our verification technique has been implemented in a prototype and the
experimental results are promising.

2 FTL: Fuzzy-Time Temporal Logic

FTL (Fuzzy-Time Temporal Logic) [1] is a language conceived to express speci-
fications for system hampered by uncertainty and vagueness, extending LTL by
adding a set of temporal operators to express vague temporal properties.

Syntax Let F be a numerable set of atomic (crisp or fuzzy) propositions,
¬, ∧, ∨,⇒ be the (fuzzy) logical connectives, and O and T the sets of unary and
binary (fuzzy) temporal modalities. Then, ϕ belongs to the set Φ of well-formed
FTL formulae (from now on, formulae), if it is defined as follows: ϕ := p | ¬ϕ |
ϕ ∼ ϕ | Oϕ | ϕT ϕ, where p ∈ F , ∼ is a binary connective, O ∈ O, and T ∈ T .
As unary operators we consider X (next), Soon (soon), F (eventually), Ft (even-
tually in the next t instants), G (always), Gt (always in the next t instants), AG
(almost always), AGt (almost always in the next t instants), Lt (lasts t instants),
Wt (within t instants), where t ∈ N; binary operators are U/U t (until/until with
t instants), AU/AU t (almost until/almost until within t instants).

Semantics The semantics of a formula ϕ is defined w.r.t. a linear structure
(S, s0, π, L), where S is the set of states, s0 is the initial state, π is an infinite
path π = s0s1 · · · ∈ Sω, πi is the suffix of π starting from the i-th position and

123

si is its first state. L : S → [0, 1]F is the (fuzzy) labeling function that assigns to
each atomic proposition in F its corresponding evaluation at each state. Besides,
we adopt an avoiding function, η : Z → [0, 1]. We assume η(i) = 1 for all
i ≤ 0, η is strictly decreasing in {0, . . . , nη} for some nη ∈ N, and η(n′) = 0
for all n′ ≥ nη. Since we are dealing with a multi-valued logic, we define the
semantics of a formula via a fuzzy satisfiability relation |=⊆ Sω×F×[0, 1], where
(π |= ϕ) = ν ∈ [0, 1] means that the truth degree of ϕ on π is ν. FTL is defined
as a family of logics, where the semantics of connectives is given on a generic
t-norm based logic [2]. We use the Gödel-Dummet interpretation for connectives,
since this is t-norm based logic that can include the same interpretation of ∧
and ∨ as in Zadeh logic. In particular, for an untimed sub-formula we have:

(πi |= p) = L(si)(p), (πi |= ϕ ∧ ψ) = min{(πi |= ϕ), (πi |= ψ)}
(πi |= ¬ϕ) =

{
1, (πi |= ϕ) = 0
0, (πi |= ϕ) > 0

(πi |= ϕ ∨ ψ) = max{(πi |= ϕ), (πi |= ψ)}

(πi |= ϕ⇒ ψ) =

{
1, (πi |= ϕ) ≤ (πi |= ψ)
0, (πi |= ϕ) > (πi |= ψ)

where p ∈ F , i ∈ N. The semantics of temporal operators, except for AGt, AG,
AU t, and AU , is summarized in Figure 1.

Φ πi |= Φ Φ πi |= Φ

Xϕ πi+1 |= ϕ Soonϕ max
i<j≤i+nη

(πj |= ϕ) · η(j − i− 1)

Ftϕ max
i≤j≤i+t

(πj |= ϕ) Wtϕ max
i≤j<i+t+nη

(πj |= ϕ) · η(j − t− i)
Fϕ lim

t→+∞
(πi |= Ftϕ) Ltϕ max

0≤j≤min{nη,t}
(πi |= Gt−jϕ) · η(j)

Gtϕ min
i≤j≤i+t

(πj |= ϕ) ϕU t ψ max
i≤j≤i+t

{min{πj |= ψ, πi |= Gj−1ϕ}}
Gϕ lim

t→+∞
(πi |= Gtϕ) ϕU ψ lim

t→+∞
(πi |= ϕU t ψ)

Fig. 1. Semantics for FTL temporal operators.

Informally, X , G and F are interpreted as classical LTL operators, except in
that the classical connectives used in their sub-formula are associated with their
fuzzy interpretation. Gt and Ft are the bounded version of G and F , respectively.
Soon extends X by tolerating at most nη time units delay.Wt means a property
is supposed to hold in at least one of the next t time units or, possibly, in the
next t+ nη time units. An increasing penalization is applied in case a property
holds after the t-th time unit. Lt expresses that a property should last for t
consecutive time units. In case a property does not hold from a certain time
unit n ∈ [0, t], a penalization is given depending on the difference between n
and t. AG evaluates a property by avoiding at most nη worse cases (i.e., where a
property is minimally satisfied). A penalization will be assigned according to the
number of avoided worse cases (k). If more worse cases are avoided, penalization
will be more severe. Hence, a tradeoff should be identified between the number
of avoided worse cases and the assigned penalization. Formally, if Pk(N) is the

124

set of subsets of N of cardinality k, then

(πi |= AG ϕ) = max
k∈N

max
H∈Pk(N)

min
j≥i,

j 6=i+h,
h∈H

(πj |= ϕ · η(k)).

AGt is the bounded version of AG, in which the index k is supposed to be in
{0, . . . ,minnη, t}. The semantics AU and AU t, is defined similarly to U and
U t, by replacing the occurrence of Gj−1 by AGj−1 (see Figure 1). Under the
assumption that all events are crisp, FTL reduces to LTL, formally:

Theorem 1. Let for all p ∈ AP and i ∈ N, πi |= p ∈ {0, 1}, and η(1) = 0.
Then FTL reduces to LTL.

We also provide an adequate set, i.e., a subset of its connectives and tempo-
ral operators that is sufficient to equivalently express any formula of the logic.
Before, we need to introduce the extra operators �j , for 1 ≤ j < nη, whose
semantics is defined by (πi |= �jϕ) = (πi |= ϕ) · η(j).

Theorem 2. A set of adequate connectives is {∧,⇒,X ,U ,AU ,�1, . . . ,�nη−1}.

3 Evaluating formulae

Describing systems with vague conditions FTL formulae are used to ex-
press properties of a system described via a Fuzzy discrete Timed Automata
(FTA) [3]. FTA are an enriched version of timed automata (TA), introduced
by Alur and Dill [4] to describe real-time systems. Analogously to TA, FTA
have the capability of manipulating clocks, which evolve continuously and syn-
chronously with absolute time. FTA extend classical finite automata to fuzzy
events, which in many contexts are more suitable to describe realistic systems.
The domain of our FTA is N, since this is the same domain chosen for FTL. FTA
are defined over a finite set of clocks, a finite set of crisp events, and a finite set
of control variables. The range over which these variables vary represents the
support for fuzzy events. The clock values change while the automaton stays in
a location and can be reset when a transition is taken. Instead, control variables
may change their value, within the limit of their range, both in a location or
when a transition is taken. Each transition of this automaton is labeled with
constraints on both clock values and fuzzy attributes, which may also be related
to the value of control variables. Then, an FTA is a finite state automaton on
infinite words in which locations are connected through Event-Condition-Action
(ECA) rules. The condition of a ECA rule is the conjunction of a temporal and
a fuzzy constraint (a fuzzy event is implicitly a fuzzy condition on the values of
the attributes on a support). Starting from the source location, a transition is
performed if the specified events occur and the conditions are satisfied. Once it
is performed, the corresponding actions (i.e., reset of a subset of the variables in
T ∪F and the increasing or decreasing of a subset of the control variables in F)
are performed as well, and the target location is reached. The values of control

125

variables can also be changed in the location, defining the variation period. Anal-
ogously to TA, the semantics of FTA is described through a Timed Transition
System (TTS), in which states represent a snapshot of the automaton during
its evolution. Each state includes the current location, the value of the clocks in
T , the set of events that just occurred, and the value of the control variables.
The transitions between states can be of three types: discrete, purely timed or
support timed. Discrete transitions represent the transition of the automaton,
purely timed transitions describe the time passed within a location and support
timed transitions represent the support variations within a location.

Evaluation algorithm An FTL formula is evaluated on a FTA not as true or
false, but by associating to it a truth degree in [0, 1].
The evaluation algorithm is composed of the following three phases:

1. Preprocessing of the FTL formula: the property is rewritten in terms of min
and max and the parsing tree of the translated formula is annotated with
the corresponding intervals under consideration;

2. Building a finite version of the TTS (FTTS) using temporal zones, as in [5];
3. Formula evaluation: the truth degree of the formula is computed on FTTS.

Step 1 is independent from step 2, but it needs to be performed before step 3.
Steps 2–3 can be seen as the stages of a pipeline, since they can be executed in
parallel and mutually synchronize on the inter-stage results.

4 Conclusions

We proposed an innovative approach for evaluating vague temporal formulae.
Our technique computes the minimum and the maximum truth degree a given
formula can have in an automata-based model (FTA) of the system. Each formula
is expressed according to FTL, a fuzzy time temporal logic, and can assume
any value in the interval [0, 1]. We provided a prototype that implements the
evaluation technique, and performed a set of experiments on a simple case study.
The preliminary results are encouraging and demonstrate the feasibility of the
approach. As a future work we aim to further improve the performance of the
checking technique and study its complexity bounds.

References

1. Frigeri, A., Pasquale, L., Spoletini, P.: Fuzzy Time in LTL. CoRR abs/1203.6278
2. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)
3. Fiorentini, N., Pasquale, L., Spoletini, P.: Evaluating vague temporal properties.

In: Submitted to Formats 2012. (2012)
4. Alur, R., Dill, D.L.: A Theory of Timed Automata. TCS 126 (1994) 183–235
5. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In:

Lectures on Concurrency and Petri Nets. (2003) 87–124

126

A Reconstruction of a Type-and-Effect Analysis by
Abstract Interpretation

Letterio Galletta

Dipartimento di Informatica - Università di Pisa
galletta@di.unipi.it

Abstract. Type-and-effect systems (TESs) have been widely exploited to spec-
ify static analyses of programs, for example to track computational side effects,
exceptions and communications in concurrent programs. We adopt abstract inter-
pretation techniques to reconstruct a TES developed to handle security problems
of a multi-tier web language. In order to reconstruct this type-and-effect analysis
we extended the Cousot’s methodology used for type systems and the correspond-
ing type inference algorithms by defining an abstract domain able to express types
augmented by semantic annotations. This abstract domain is an extension of the
Hindley’s monotypes with a new kind of variables and constraints. We show that
this abstract domain allows us to reconstruct different type-and-effect analyses by
properly changing the set of monotypes and the shape of the constraints. In partic-
ular, we apply this approach to reconstruct the Call-Tracking Analysis. As usual
with abstract interpretation, the analysis is correct by construction. The analyser
has been implemented in OCaml.

1 Introduction

Type-and-effect systems (TESs) are a powerful extension of type systems which al-
lows one to express general semantic properties and to statically reason about program
execution. The underlying idea is to refine the type information so to express further
intentional or extensional properties of the semantics of the program. In practice, TES
compute the type of each program sentence and an approximate (but sound) description
of its run-time behaviour.

Type systems (and the corresponding type inference algorithms) have been recon-
structed as a hierarchy of abstract interpretations by Cousot [3]. In [5,6] we have ex-
tended the Cousot’s methodology to reconstruct the TES used in [1] to handle security
issues in the multi-tier web language LINKS [2]. We have shown that the original anal-
ysis was unsound. We have fixed the flaw and derived a correct analyser as an abstract
semantics. In order to reconstruct this TES we have defined an abstract domain able
to express types augmented by semantic annotations and concrete values. This abstract
domain is an extension of Hindley’s monotypes [7,4,3,9] and it could be easily imple-
mented. Its definition is based on an approach described in [11] and exploits specific
annotated types (simple types), where the annotations are replaced by a special kind of
variables (annotation variables) whose values satisfy suitable constraints. An abstract
value is indeed a pair (ts,C) where ts is a Hindley’s monotype with annotation variables
and C is a constraint whose solution represents the annotation.

127

We argue that this abstract domain is general enough to reconstruct different TESs
by properly changing the set of monotypes and the shape of the constraints. To show
the flexibility and the feasibility of our abstract domain we have reconstructed a quite
simple analysis, Call-Tracking Analysis (CTA), for which a TES was provided in [11].
This analysis allows one to determine, for each expression, the type of the computed
value and the function applications which may occur during the evaluation. We defined
this analysis, for a minimal ML core (TINYML). For example, the expression

let rec fact = fun[fact_point] n -> if (iszero n) then 1
else n * (fact (n - 1))

defines a recursive function which computes the factorial of a number and which is
uniquely identified by the label fact point. The CTA computes an abstract value ex-

pressing the annotated type int
{fact point}−→ int, i.e. a function from integers to integers

which could apply the function denoted by the label fact point during its evaluation.
To the best of our knowledge the only paper relating TESs and abstract interpre-

tation is [12]. In this paper Vouillon and Jouvelot introduce a simple program time
complexity estimator for a λ-calculus with recursion. They also define an abstract in-
terpretation and a TES for this analysis. Their main result is that these two a priori
distinct approaches are equivalent. Their abstract semantics computes for each expres-
sion the set of ground types compatible with the value given by the concrete evaluation.
Hence, this abstract domain is more adapt to relate and prove equivalent two differ-
ent approaches than to directly implement an analyser. Our abstract domain, instead, is
designed to be easily implemented.

In this extended abstract we survey the ideas and the methodology underlying our
abstract domain (Section 2) and we show some results obtained by the analyser, imple-
mented in OCaml (Section 3). Page limitation prevent us from giving more details on
the formal development and the implementation issues. A full presentation, including
all the proof and the code can be found in [5].

2 Reconstruction of the Call-Tracking Analysis

In this section we describe the ideas of our reconstruction of the TES for CTA. TINYML
is a minimal core of ML so its syntax is standard and we assume each λ-abstraction to
have a unique label (l ∈ Point).

We define a denotational semantics as concrete semantics[3], that computes a pair
for each expression: its value and the set of the function labels applied during the eval-
uation (the effects). To store the effects we use the effects environment. Since TINYML
is an untyped λ-calculus, we define the semantic domain of values Eval as a recursive
sum of cpos, where each element of the sum represents a suitable class of values.

As usual then we take the powerset of the concrete semantics as the collecting one.
In a TES types can be annotated (e.g. to record latent effects), the definition of a suit-
able abstract domain requires particular care. In [6] we extend the Hindley’s mono-
types by introducing a new kind of variables (annotation variable) and constraints.
In practice, an abstract value is a pair (t,C) where t is an Hindley’s monotype with

128

annotation variables and C is a set of constraints whose solution represent the anno-
tation that the type can have. For the CTA the domain of abstract values is TypeA =
TypeS×Constr where TypeS is the set of Hindle’s monotypes with annotation vari-
ables1 (Va) and Constr = P (Va×Point) is the set of constraints. A constraint is as a set
of pairs (annotationvariable, label): (δ, l) means that the label l is a member of the
type annotation represented by the variable δ.

A Galois connection relates the abstract and the concrete domain. The connection
is defined in [5] by using standard results, e.g. representation function [10].

The definition of the abstract semantics equations for CTA follows the same schema
of [5,6], but in this case the computed effects concern the function applications encoun-
tered during the evaluation.

3 Examples

The abstract semantics of TINYML has been implemented in OCaml [8]. To illustrate
the analyser, consider the expression

let a = fun[a_point] x -> true in
let b = fun[b_point] x -> false in

(a 1) or (b 1)

defines two constant functions, a and b. The first function returns true, the second one
false. We take the disjunction of applying both function to 1. The analyser computes

(type - : Boolean [(_annvar2_,a_point), (_annvar3_,b_point)] &
{a_point, b_point})

that is the computed value is a boolean and during the evaluation we might apply both
functions. Notice that this happens because during the abstraction process we loose
precision. Since we do not know the values of the disjuncts, we have to evaluate them
both. As a consequence, the resulting effect is not precise, yet safe and valid.

As second example consider the expression

(fun[x_point] x -> x) (fun[y_point] y -> y)

representing the application of the identity function with label x point to the identity
function with label y point. The analyser computes

(type - : Function(_typevar1_, _annvar1_, _typevar1_)
[(_annvar2_,x_point), (_annvar1_,y_point)] & {x_point})

that is the computed type is a function and during the evaluation we might apply the
function identified by the label x point.

1 Actually, for technical reasons TypeS is the lifting of Hindle’s monotypes with idempotent
substitutions and a new bottom, see [5,6]

129

4 Conclusions

We have shown that abstract interpretation can deal with TESs. We defined an abstract
domain able to express types augmented by semantic annotations and at the same time
simple enough to allow the implementation of an analyser in OCaml. Our abstract do-
main extends Hindley’s monotypes with a new kind of variables and constraints. We
have prove the expressive power of this domain by showing that it allows us to re-
construct different TESs by only changing the set of monotypes and the shape of con-
straints. As an example we have reconstructed the CTA.

References

1. Baltopoulos, I.G., Gordon, A.D.: Secure Compilation of a Multi-Tier Web Language. In:
TLDI ’09: Proceedings of the 4th international workshop on Types in language design and
implementation. pp. 27–38. ACM, New York, NY, USA (2009)

2. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without tiers. In:
In 5th International Symposium on Formal Methods for Components and Objects (FMCO).
Springer-Verlag (2006)

3. Cousot, P.: Types as abstract interpretations, invited paper. In: Conference Record of the
Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 316–331. ACM Press, New York, NY, Paris, France (Jan 1997)

4. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL ’82: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 207–212. ACM, New York, NY, USA (1982)

5. Galletta, L.: Una semantica astratta per l’inferenza dei tipi ed effetti in un linguaggio multi-
tier. Master’s thesis, Università di Pisa (2010), available at http://www.cli.di.unipi.
it/˜galletta/tesi.html

6. Galletta, L., Levi, G.: An abstract semantics for inference of types and effects in a multi-tier
web language. In: Proceedings of the 7th International Workshop on Automated Specifica-
tion and Verification of Web Systems (2011)

7. Hindley, R.: The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society 146, 29–60 (1969)

8. INRIA: The Caml Language, http://caml.inria.fr, wWW publication
9. Monsuez, B.: Polymorphic typing by abstract interpretation. In: Proceedings of the 12th

Conference on Foundations of Software Technology and Theoretical Computer Science. pp.
217–228. Springer-Verlag, London, UK (1992)

10. Nielson, F., Nielson, H.R.: Type and Effect Systems. In: Olderog, E.R., Steffen, B. (eds.) Cor-
rect System Design, pp. 114–136. No. 1710 in Lecture Notes in Computer Science, Springer
(1999), http://www2.imm.dtu.dk/˜nielson/Papers/NiNi99tes.pdf

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, 1st ed.
1999. corr. 2nd printing, 1999 edn. (2005)

12. Vouillon, J., Jouvelot, P.: Type and effect systems via abstract interpretation (1995), http:
//www.cri.ensmp.fr/classement/doc/A-273.pdf

130

Leveraging dynamic typing through static typing

Paola Giannini?2 and Daniele Mantovani1 and Albert Shaqiri12

1 AlgorithMedia, Alessandria, Italy
2 CSI, DISIT, Univ. del Piemonte Orientale, Italy

Introduction Implementing more than a trivial application in JavaScript (or
any other dynamically typed language) can cause problems due to the absence
of type checking. Such problems can lead to unexpected application behaviour
followed by onerous debugging. Although dynamic type checking and automatic
type casting shorten the programming time, they introduce serious difficulties
in the maintenance of medium to large applications. This is the reason why
dynamically typed languages are rarely used for more than just prototyping and
quick scripting.
We propose to deal with these problems using dynamically typed languages as
“assembly languages” to which we translate the source code from F# which is
statically typed. In this way, we take advantage of the F# type checker and type
inference system, as well as other F# constructs and paradigms such as pattern
matching, classes, discriminated unions, namespaces, etc. There are also the
advantages of using an IDE such as Microsoft Visual Studio (code organization,
debugging tools, IntelliSense, etc.).
To provide translation to different target languages we introduce an intermediate
language. This is useful, for instance, for translating to Python that does not
have complete support for functions as first class concept, or for translating to
JavaScript, using or not libraries such as jQuery.
The paper is organized as follows. We first introduce the syntax of the core
of the intermediate language. Then, we present the translation from F# to this
intermediate language, and from the intermediate language to both JavaScript
and Python. We do this via some examples that highlight the features of the
intermediate language and the differences between the two target languages.
Then, we briefly discuss correctness, and implementation. Finally, we compare
our approach with related work, and discuss plans for future work.

Intermediate language The intermediate language is higher level than most
intermediate languages. The syntax of the language is presented in Fig.1. There
are three syntactic categories: expressions, e, statements, st , and sequence state-
ments, s, which are sequences of statements returning a value. A program is a
sequence statement. Although in F# everything is an expression, we introduce
a distinction between expressions and statements as many target languages do.
This facilitates the translation process and prevents some errors while building
the intermediate abstract syntax tree, see [3] for a similar choice. The construct
of the language which is most useful in the translation is stm2exp, which is a
sequence statement, s, whose free mutable variables are a subset of {u1, . . . , un};
? The work of this author was partly funded by the project MIUR DISCO - Distribu-

tion, Interaction, Specification, Composition for Object Systems.

131

stm2exp is a value (like the lambda abstraction), and therefore, may be passed
around. Its type, 〈u1:t1, . . . , un:tn〉t says that in an environment in which the
mutable variables ui have type ti (1 ≤ i ≤ n), then s has type t . The construct
exc e evaluates the expression e, which is supposed to be a stm2exp in the
current store, dynamically binding its free mutable variables in the execution
environment. The use of the construct will be explained when presenting the
translation.

s :: = return e | st ; s sequence statements
st :: = u:=e | let x :t=e | let! u:t=e | return e |

:: = if e then s1 else s2 statements
e :: = x | n | tr | fls | e1+e2 | fun x :t->s | e1 e2 | exc e |

:: = stm2exp(s, {u1:t1, . . . , un:tn}) | (int)e | (bool)e expressions
t :: = int | bool | t1 → t2 | 〈u1:t1, . . . , un:tn〉t types
v :: = n | tr | fls | fun x :t->s | stm2exp(s, {u1:t1, . . . , un:tn}) values

Fig. 1. Syntax of core intermediate language

Translation by examples Many F# constructs can be directly mapped to
JavaScript (or Python), but when this is not the case we obtain a semantically
equivalent behaviour by using the primitives offered by the target language. E.g.,
in F# a sequence of expressions is itself an expression, while in JavaScript and
Python it is a statement. Suppose we want to translate a piece of code that
calculates a fibonacci number, binds the result to a name and also stores the
information if the result is even or odd. On the left of Fig. 2 is the F# code.
As we can see, on the right-hand-side side of let x= we have a sequence of

let mutable even = false
let x =

let rec fib x =
if x < 3 then 1
else fib(x - 1) + fib(x - 2)

let temp = fib 7
even <- (temp % 2 = 0)
temp

x

let y = stm2exp(
let fib = fun x:int ->

if x < 3 then return 1
else return (fib (x-1)

+ fib (x-2));
let temp = fib 7;
even := temp % 2 = 0;
return temp;,

{even:bool});
let! even = false;
let x = exc y
return x;

Fig. 2. Translation of F# sequence of expressions in the intermediate language

expressions: the definition of the function fib followed by the definition of temp,
etc. This sequence is, in F#, an expression. On the right side of Fig. 2 is the
translation into the intermediate code. The sequence of statements is translated
in a stm2exp expression whose first component is the sequence of statements,
and the second the set of free mutable variables occurring in such statements
with their type: in this case the variable even of type bool, and bound to the
variable y. The variable x is then bound to the exc expression applied to y (to

132

obtain the result that we would have by evaluating the sequence of statements in
the current environment). Assume that, the F# code was mapped to JavaScript
literally, we would obtain the program on the left side of Fig. 3. This program is

var even = false;
var x =

var fib = function (x) {
if (x < 3)

return 1;
else

return fib(x - 1) + fib(x - 2);
};
var temp = fib(7);
even = (temp % 2) == 0;
temp;

return x;

(function() {
var even = false;
var x = (function () {

var fib = function (x) {
if (x < 3)

return 1;
else

return fib(x - 1)
+ fib(x - 2);

};
var temp = fib(7);
even = (temp % 2) == 0;
return temp;

})();
return x;

})();

Fig. 3. Wrong and Correct JavaScript translations

syntactically wrong, since on the right-hand-side of an assignment we must have
an expression, while a sequence of expressions is, in JavaScript, a statement. To
transform a sequence of statements in an expression, in JavaScript, we wrap the
sequence into a function, and to execute it we call the function, i.e., we use a
JavaScript closures and application. Also, the whole program is wrapped into an
entry point function. In this way, the code on the right side of Fig. 3 is correct.
Unfortunately, the same cannot be done in Python as its support for closures
is partial. So we have to define a temporary function, say temp1, in the global
scope and to execute it we have to call temp1 in the place where the original
sequence should be. However, variables such as even will be out of the scope
of their definition, and this would make the translation wrong. To obtain a
behaviour semantically equivalent, we have to pass to temp1 the variable even,
by reference, since it may be modified in the body of temp. Note that, this
problem is not present in JavaScript where the closure is defined and called in
the scope of even. Another problem in Python is related to lambdas, whose
body must be an expression (not a sequence). So we define the function temp2

whose body contains the statements that should be placed where an expression
is expected. In Fig. 4 we can see the translation of the F# code into Python. The
class ByRef is used to wrap the mutable variable even to obtain a parameter
called by reference. The Python code generator inserts the needed wrapping and
unwrapping before and after the call of temp1, and in the body of temp1. Going
back to our intermediate language, we use the construct stm2exp to provide the
information needed to produce both translations, recording the information on
the free mutable variables, needed for any language not supporting closures. We
do not record free immutable variables, as they can be substituted with their
values.

133

def temp1(even):
def temp2(even, fib, x):

if (x < 3):
return 1

else:
return fib(x - 1) + fib(x - 2)

fib = lambda x: temp2(even, fib, x)
temp = fib(7)
even.value = ((temp % 2) == 0)
return temp

def __main__():
even = false;
wrapper1 = ByRef(even)
x = temp1(wrapper1)
even = wrapper1.value
return x

__main__();

Fig. 4. Translation in Python

Dynamic Type checking JavaScript, and many dynamically typed languages,
lack a rigorous type system. On the contrary, in F# if we write a function that
adds two integers, see left side of Fig. 5, even though we do not specify type
information, the interpreter infers the type shown after the function definition.
Therefore, there is no way of calling add with arguments that are not of type
integer. However, if our translation in the intermediate code would produce a
function whose body was simply x+y, which in turn could be translated in the
corresponding expression in both JavaScript and Python, the target JavaScript
function could be called, e.g., add("foo")(1) and obtain the string "foo1"

which is not what we wanted. In Python the situation would be better, in the
sense that we cannot call add on a string and an integer, however, due to over-
loading we can call it on 2 floating points obtaining a floating point. To prevent

let add x y = x + y

val add : int -> int -> int

let add = fun x:int ->
return fun y:int ->

return (int)x+(int)y;

Fig. 5. F# code and the corresponding intermediate representation with type casting

this, the translation in the intermediate language, see right side of Fig. 5, insert
type casting on the occurrences of function parameters. This is translated into
dynamic type checking in JavaScript and Python as is shown in Fig. 6, where
the function toInt tries to convert the argument we pass it to an integer, and if
it fails, raises an exception. Our intermediate language supports other features

var add = function (x) {
return function(y) {
return toInt(x) + toInt(y);

}
}

def temp1(x, y):
return (int(x) + int(y))

def add(x):
return lambda y: temp1(x, y)

Fig. 6. JavaScript and Python version with type casting

such as namespacing, classes, pattern matching, discriminated unions, etc. Some
of this features have poor or no support at all in JavaScript or Python although

134

semantically equivalent behaviour can be achieved through other language con-
structs.

Full abstraction of the translations We have defined an operational seman-
tics for the intermediate language, IL, and a type system enforcing the property
that well typed programs evaluated in a store that agrees with their definition
environment do not get stuck. Moreover, before the conference we plan to prove
the full abstraction of the translations. That is, (1) formalize a fragment of F#,
FSc, a core Javascript, JSc, and a core Python, PYc, as we have done for the in-
termediate language; (2) define the translations from FSc to IL, and from IL to
JSc and PYc; (3) prove that the translations preserve the operational semantics
(and for the one from FSc to IL also the typing) of the relative languages.

Implementation The compiler is implemented in F# and is based on two
metaprogramming features offered by the .net platform: quotations and reflec-
tion. These mechanisms allow one to extract code and type information during
runtime, reason about it and, in our case, are used to build an intermediate
language abstract syntax tree from which the target code is generated.

Comparisons and future work Similar projects exist and are based on similar
translation techniques, although, as far as we know, we are the first to introduce
an intermediate language allowing to translate to many target languages. Pit,
see [4], is an open source F# to JavaScript compiler. It supports many F# features
(at the time of this writing it is at version 0.2) and is very well documented.
It supports only translation to JavaScript. Websharper, see [5], is a professional
web and mobile development framework. As of version 2.4 an open source license
is available. It is a very rich framework offering extensions for ExtJs, jQuery,
Google Maps, WebGL and many more. Again it supports only JavaScript. F#
Web Tools is an open source tool whose main objective is not the translation to
JavaScript, instead, it is trying to solve the difficulties of web programming: “the
heterogeneous nature of execution, the discontinuity between client and server
parts of execution and the lack of type-checked execution on the client side”,
see [8]. It does so by using meta-programming and monadic syntax. One of it
features is translation to JavaScript. Finally, a translation between Ocaml byte
code and JavaScript is provided by Ocsigen, and described in [9].
On the theoretical side, a framework integrating of statically and dynamically
typed (functional) languages is presented in [6]. In [10] a cast construct wrapping
dynamic code is introduced, and it is showed how it can be used to prove the
source of run time type errors. Support for dynamic languages is provided with
ad hoc constructs in Scala, see [7]. Finally, a construct similar to stm2exp, is
studied in [2], where it is shown how to use it to realize dynamic binding and
meta-programming, an issue we are planning to address.
Our future work will be on the practical side to use the intermediate language
to integrate F# code and JavaScript or Python native code. On the theoretical
side, we plan to finish the proof of full abstraction of the translation from F# to
the intermediate language, and from this to the target languages. Moreover, we
would like to explore meta-programming on the line of [2]. We also plan to explore

135

the extension to polymorphic types of the type system for the intermediate
language, which is, as shown in [1] non trivial.

References

1. Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for
all. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, ACM, pages 201–214,
2011.

2. Davide Ancona and Paola Giannini Elena Zucca. Reconciling positional and nom-
inal binding. In ITRS 2012 (accepted for presentation), 2012.

3. Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Univer-
sity Press, 1998.

4. Mohamed Suhaib Fahad. Pit - F Sharp to JS compiler. http://pitfw.org/, May
2012.

5. Intellifactory. Websharper 2010 platform. http://websharper.com/, May 2012.
6. Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-

language programs. ACM Trans. Program. Lang. Syst., 31(3), 2009.
7. Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-

virtualized. In Oleg Kiselyov and Simon Thompson, editors, Proceedings of the
ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipula-
tion, PEPM 2012, Philadelphia, Pennsylvania, USA, ACM, pages 117–120, 2012.

8. Tomáš Petř́ıček and Don Syme. AFAX: Rich client/server web applications in F#.
http://www.scribd.com/doc/54421045/Web-Apps-in-F-Sharp, May 2012.

9. Jerome Vouillon and Vincent Balat. From bytecode to javascript: the js of ocaml
compiler. http://www.pps.univ-paris-diderot.fr/~balat/publi.php.

10. Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.
In ESOP 2009, volume 5502 of LNCS, pages 1–16, 2009.

136

Lock Analysis for an Asynchronous Object
Calculus

Elena Giachino and Tudor A. Lascu

FOCUS Research Team INRIA / Dipartimento di Scienze dell’Informazione,
Università di Bologna

[giachino | lascu]@cs.unibo.it

1 Introduction

The model. The problem we are interested in is discovering deadlocks and live-
locks in an object-oriented setting, where method calls are asynchronous, mean-
ing that after a method is invoked the caller does not wait for the returned
value, instead it continues its activity until the result is strictly necessary. In
this model [4, 3] objects have multiple tasks in execution, spawned by method
invocations, and there is at most one active task per object at each point in time.
The active task may explicitly return the control in order to let another task
of the same object progress. The decoupling of method invocation and returned
value is realized by means of future variables, which are pointers to values that
may be not available yet. Clearly, the access to values of future variables may
require waiting for the value to be returned. In order to program in this model we
introduce a language called Featherweight Java with futures (FJf) [1], inspired by
FJ [2], that features two primitives for dealing with futures and control release.
The get operation is used to retrieve a return value, keeping object’s lock while
waiting for it. The await operation, instead, is used to wait for the availability
of a computation’s result. If the result is not ready, the task suspends, by first
releasing the lock of the object. If the result is ready, await is non-blocking but
in order to retrieve the actual value it waited for, the task still needs to perform
a get.

Deadlocks. In the considered model a typical deadlock occurs when one or more
tasks are waiting for each other’s termination to return a value. Let us consider a
simple scenario with

a b

 try to lock

 method m

 method n

Fig. 1. A simple dead-
lock.

two objects a and b as in Fig. 1. Object a contains a
task related to some method m which in turn invokes a
method n on object b and explicitly blocks waiting for
the result. This invocation triggers a task at b respon-
sible of executing n’s body, which again performs an
invocation on a waiting for the result. This last task
inside a is created but it never obtains the lock (held
by m) for executing its own code. The computation is
deadlocked. Black arrows between objects correspond to object dependencies,

137

class C {
C m() { return new C() ;}
C r(C x) { return x!m().get ;}

}
class D extends C {

Fut(C) q(D y) {
return (y!r(this); this!r(y));

}
}

Fig. 2. Simple classes in FJf Fig. 3. Deadlock in FJf

introduced by get operations. A circular dependency means that a deadlock is
encountered.

Livelocks. Let us consider a slightly different example, where method n at b

performs an await. Thus, while waiting it releases the lock instead of keeping it.
The semantics of await requires the task to compete again for the lock with other
tasks in the same object, and then try again for the result. If it is available the
computation proceeds, otherwise the lock is released again and so on. Releasing
the lock in b does not change the fact that tasks in a are blocked. The circular
dependency still holds, however the system is not completely blocked but the
task of method n is caught in an infinite loop of getting and releasing the lock
(a livelock).

A non-trivial dangerous pattern. We now discuss a program that can manifest
a subtle deadlock. In FJf a program is a collection of class definitions plus an
expression to evaluate, just as in FJ. A simple definition in FJf is the class C in
Fig. 2 that defines two methods: m to build a new object and r that we discuss
below. Class D extends C with a method, q, which returns a value of type Fut(C),
the type of a method invocation returning an object of type C. Let’s consider
the expression new D()!q(new D()), i.e. an asynchronous call of method q. Two
objects, o1 and o2, of class D are created and then the method q is invoked on o1
passing o2 as a parameter. The body of q contains a sequence of two invocations
of r. Each invocation spawns a new task and returns immediately the control to
the caller. These two tasks are hence spawned, inside o1 and o2, respectively (see
Fig. 3 where the method invocations are indicated by the dotted lines). The task
executing q terminates correctly. The program, however, continues its execution
with the spawned tasks. Among the possible interleavings there is one that gives
a deadlock. In particular the dotted task in o2 invokes m on o1, where a new task
is created, and waits for the result returned by a task inside o1, keeping the lock
of o2 (since it’s a get operation). Analogously, the dotted task in o1 gets to run
and it hangs waiting for a method in o2 to return, holding o1’s lock. The two
tasks shown with a plain line will never be able to execute since the lock of each
object is kept by the dotted tasks. Moreover the two objects o1 and o2 are both
indefinitely blocked and hence the program is stuck. Notice that this deadlock
depends on the scheduler: had the task in o1, on which the dotted task in o2
depends, gotten into execution before the dotted task in o1 no problem would
have arisen.

138

Contracts. In order to capture circular dependencies and therefore statically
detect dangerous configurations as the ones described above, we need to trace
all the object dependencies, in the form of pairs of object names (graphically
represented by the arrows in Fig. 1). Since we want to do this statically, we
need a way to identify and track every object in the program. To this aim,
we define a technique that associates to each new operation (i.e. the one that
is responsible of creating a new object) a fresh object name, picked from a
countable set of object names o1, o2, Then a type system computes the object
name associated to each expression of the program. For instance, to a method
invocation is assigned (a reference to) the object name returned by the method,
to a field selection the object stored in the field, and so on. The type entity
conceived to represent this kind of information is the future record. Moreover,
as we said, we are interested only in detecting object pairs, which are the result
of get and await operations, and we collect those pairs by following all the
chains of method invocations. Therefore other local computation terms different
from get, await, and method invocations are not relevant to the analysis. The
type system, besides computing object identities of expressions, is responsible of
extracting from the program abstract descriptions, called contracts, containing
only relevant information. More precisely, the typing judgments have the form
Γ `a e : (T, r) , c, where Γ is the environment, a is the name of the object this,
e is a FJf expression, T is its (class or future) type, r is a future record, and the
c is the contract. A future record of the form a[f̄ : b̄], when associated to an
expression e, means that a is the object associated to e, and the fields of a are
assigned the objects b̄. A future record of the form a r corresponds to a future
reference to the object r, being produced by a method invoked on an object a.
(In order to retrieve the actual value, a get operation must be perfomed on the
expression assigned this record.) Future records can also be not fully specified,
as c[f : X], allowing us to avoid infinite future records. The syntax of contracts
associated to expressions is the following:
c ::= 0 | C.m r(r̄) → r

′ | C.m r(r̄) → r
′.(a, a ′) | C.m r(r̄) → r

′.(a, a ′)a |
(a, a ′) | (a, a ′)a | c # c

where C.m r(r̄) → r
′ corresponds to the invocation of m in class C on a object

r, passing objects r̄ as parameters, and object r
′ is the returned value. Object

pairs (a, a ′) and (a, a ′)a are introduced by get and await operation, respectively.
They can be isolated, meaning the operation has been performed on a method
parameter or field, or they can be associated to a method invocation. Finally,
c # c is used for sequential composition.
The behavior of a method is described by the contract of its body, which is
wrapped around by an interface specifying the binders, i.e. the receiver’s and
parameters’ names, for the names occurring inside the contract, and the returned
value. All free occurrences correspond to new objects, and are therefore fresh
names in the system. This whole description, called method contract, has the
form r(r̄){c} s. The contract of a method call is built by instantiating the
formal object names, contained in the method contract, with the actual ones.
For example, the contract of the method m of Fig. 2 is derived using the rule

139

Γ + this : (C, a[]) `a new C() : (C, b[]) , 0

Γ ` C m (){return new C(); } : a[](){0} b[] in C

where in a[](){0} b[] we have a[] as the receiver object (a is the object
name and [] means an empty sequence of fields), no parameters, and b[] as
the returned object. The contract is empty (= 0) in this case, meaning that
m’s body contains no method invocations. Let’s consider method r’s contract:
a[](c[]){ C.m c[]() → b[].(a, c) } b[], where the contract body gives an
abstract account of r’s behavior: it invokes method m of the same class on the
object c[], passed to it as a parameter, and finally returns a third object b[].
The get operation specifies that the task inside a has to wait for another task
inside c to return: this information is thus added to contract c with the pair
(a, c). The general rules for get and await expressions are:

Γ `a e : (Fut(T), a ′ s) , c

Γ `a e.get : (T, s) , c G (a, a ′)

Γ `a e : (Fut(T), a ′ s) , c

Γ `a e.await : (Fut(T), a ′ s) , c G (a, a ′)a

where the G operator can be read as “add pair (a, a ′) to c”. As expected, the
get operation, retrieving the result, on an expression of type Fut(T) returns an
object of type T and the returned future record s. The await operation instead,
dealing only with the availability of the result, leaves the type and record part
unchanged. They both affect the contract c by documenting that in the former
(resp. the last) case, the continuation (resp. correct termination) of the execution
of object a’s activity is bound to the termination of a task inside an object a ′.

The analysis. Once contracts have been inferred we transform them into au-
tomata and by composition we obtain a finite model of an FJf program. The
states of this automaton contain dependencies and the transitions model how
dependencies are activated or discarded during program’s execution. A potential
misbehavior is signaled by the presence of a circularity in some state of it. Our
analysis is based on over-approximations and as such: if the analysis certifies a
program to be lock-free it certainly is, otherwise it means that a locked config-
uration might be reached at run-time (as is the case of deadlock depending on
the scheduler’s choices). The framework we have just described can be found
in [1]. In the following section we discuss some extensions and their impact on
the analysis.

2 Extensions

Field updates. FJf, just as FJ, is a functional language as fields are initialized by
the constructor and are immutable. In this contribution we introduce a notion of
state by enabling the private field updates, namely by adding this.f = e to the
syntax of expressions. To see how this enhancement is reflected upon our frame-
work let us consider a sequence of two method invocations x.m(); x.n(), both
called on the same object and both modifying the same field. Say m does this.f
= e1 and n does this.f = e2. Due to the asynchronous nature of method in-
vocation, there is no way to know the order in which the updates will take place

140

at run-time. Working statically, we have to keep track of all the different pos-
sibilities, thus the type system must assume for an expression a set of possible
objects it can reduce to. The updated syntax of future records is the following:
r ::= X | A[f̄ : r̄] | A r, where A is a set of object names. For instance, let
us consider a field f containing an object with a field g. If two different updates
of f occur in the program, with two expressions of future record r = b[g : r′] and
s = c[g : s′], respectively. The future record of f must then take into account
both updates and therefore it will be r

∨
s = {b, c}[g : r′

∨
s
′]. A typing rule for

the new construct is introduced:
Γ `a this : (C, a[f̄ : r̄′, f : r

∨
s) , 0 Γ `a e : (C′, r) , c C′ <: C

Γ `a this.f = e : (C′, r) , c

As for the analysis, the transformation of contracts into automata must be
adapted to treat sets of names instead of single object names. While the analysis
is less precise, since it predicts a set of dependencies for each actual one, it is
still correct: if a program is recognized to be lock-free, its execution will proceed
without encountering a locked configuration.

Task Dependencies. By extending FJf with field update we introduce the possi-
bility of having pure livelocks: configurations made up of only await-generated
dependencies in which there is a circularity of task dependencies. Fig. 5 depicts
such a configuration in which await-pairs are shown with a dashed arc. Without
field updates, it is not possible to write a program that leads to such a configu-
ration. Therefore, the analysis could safely ignore an await-circularity between
objects (as in [1]). Consider for example the situation of Fig. 4.

o1 o2

 t1

 t2

 t3

Fig. 4. Non-problematic await-circularity

o1 o2

 t1 t2

Fig. 5. Pure livelock

The (object) circularity due to (o1, o2)a and (o2, o1)a does not lead to a live-
lock since task t3 can acquire o1’s lock and get into execution. t2 and t1 can
therefore terminate. As soon as pure livelocks become expressible, we have to
refine the analysis to work at a finer granularity by also taking into considera-
tion task pairs. In facts, when the analysis finds a circularity of await-pairs, it
needs additional information on task pairs in order to discriminate pure livelocks
from non-dangerous configurations. (This additional discriminating power only
concerns await-circularities, as a circularity with one or more get is always a
dangerous configuration.) The typing judgments must then include information
about the task in which a given expression is to be typed. They thus take the
form: Γ `ta e : (T, r) , c.
We adopt a technique similar to the one for object names described in Sec. 1.
Namely, we introduce a fresh task name (picked from a countable set of task
names t1, t2,. . .) for every method invocation much in the same way as we in-
troduced a fresh object name for every new construct in the program. That is,
we employ task names for tagging a method invocation with the task responsible

141

for its computation: A ts. The rule for await becomes:
Γ `t

a e : (Fut(T),A t′s) , c

Γ `t
a e.await : (Fut(T),A t′s) , c G (t, t′) G (a, ai)

a ∀ai ∈ A t′s

adding both a task pair (t, t′) and a set of object pairs (a, ai)
a, one for each ai

in the set A.

References

1. E. Giachino, C. Laneve, and T. A. Lascu. Deadlock and livelock analysis in concur-
rent objects with futures. www.cs.unibo.it/~laneve/publications.html, 2011.
Submitted.

2. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23:396–450, 2001.

3. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Proc. of FMCO 2010, volume
6957 of LNCS, pages 142–164. Springer-Verlag, 2011.

4. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and System Modeling, 6(1):39–58, 2007.

142

Input/Output Types for Dynamic Web Data
(Extended Abstract)

Svetlana Jakšić

Faculty of Technical Sciences
University of Novi Sad
sjaksic@uns.ac.rs

As information networks become more open and dynamic, the need for protecting
security and privacy of data is increasingly important in many fields of human activities.
Systems must be able to exchange data and processes while preserving security. In case
we are given a target security policy for a distributed system containing XML data, how
can we check weather the system behaves according to the policy? One solution is to
suitably annotate the security relevant events, to classify them according to a type sys-
tem and to verify security properties by typing. In [3] we introducedrXdπ-calculus, a
calculus for role-based access control of dynamic web data, and a type system for it and
we verify the security properties by typing. Here, a subtyping relation which extends
the type system forrXdπ is proposed.

First, an example which illustrates the proposed approach and advantages of the ex-
tended type system will be given and then a brief presentation of the subtyping relation
and a discussion of the related work. The full presentation of rXdπ-calculus and the
corresponding type system, which can be found [3], will be omitted here.

An example

Let us consider a simple distributed system consisting of code running on behalf of four
principals: an online discussion forum, a guest, a member and the moderator. Let the
forum, written in XML notation, have the shape:

< forum >
< general >

forum rules
< /general >
< music >

lyrics
< /music >

< /forum >

The forum contains two main topics: the general and the music. In order to describe
the behaviour of the guest, the member and the moderator we will use process calcu-
lus notation. In the syntax of rXdπ-calculus we consider four kinds of processes: π-
calculus processes [7], for modelling local communication; go command, for modelling
process migration between locations, as in Dπ calculus [6]; run, read and change

commands and for modelling interaction of processes with local data in place of the

143

update command of [5] and commands enable and disable for changing permis-
sions to access data. We write readforum/general(χ) for a guest wishing to read forum
rules, where χ is a data pattern he is looking for, and readforum/music(χ) for a member
wishing to read the lyrics. The process !b(y).changeforum(x, x|y) represents the mod-
erator of the forum who has the ability to add a new topic. The moderator receives the
new topic, updates the forum with it and waits to receive the next topic. In [3] we have
investigated a system in which different participants can have different rights. We have
achieved diversity and control of the rights by introducing role-based access control.
More precisely, each tag is assigned a set of roles that a process is required to have in
order to access it. The forum of this example decorated with sets of roles is:

< forum role = guest >
< general role = guest >

forum rules
< /general >
< music role = member >

lyrics
< /music >

< /forum > .

The same forum written in the syntax of our calculus is:

forum{guest}[general{guest}[forum rules]|[music{member}[lyrics]].

Let the roles guest, member and moderator belong to a countable set of roles which
is a lattice for a partial order v. We consider guest v member v moderator.
As expected, we assign the role guest to the unregistered guest of the forum, the
role member to the registered user and the role moderator to the moderator of the
forum. We say that the tag (or the edge when we use tree representation of XML
documents) forum is accessible to the process with role guest or higher. The path
forum/general is accessible to the process with the role guest since both tags are
accessible to it, while the path forum/music is not. The forum we have described
here is a “wiki” forum that allows guests and members to add content to the parts
they have access to, as on an Internet forum, but also allows them to edit the con-
tent. All processes belonging to the same role have the same rights. Locations con-
tain the processes and data. The behaviour of all the principals in the system is con-
trolled with location policies and type system introduced in [3]. The policy of a loca-
tion regulates changes of access rights. For example, if the forums’ location policy is
({guest}, {({moderator}, guest)}, {({moderator}, member)}) then the processes
with a role lower then guest can not access the forum at all and that the moderator
may allow guest to access more topics or ban members to access the some topics in
the forum. The dynamic change of access rights to data is done by adding or removing
roles from the sets of roles on the data tree edges. The type system checks if a data tree
and a process conform to a given location policy.

We propose an extension of the type system of [3] with subtyping relation in order
to describe richer behaviour in our model. In the forum example, the process

b̄〈new{guest}[· · ·]〉q{guest} | b̄〈new{member}[· · ·]〉q{member}
| !b(y).changeforum{moderator}(x, x|y)q{moderator}

144

which represents a guest and a member, both wishing to send a new topic to the mod-
erator for approval, is rejected by the type system of [3]. However, with the proposed
subtyping relation, this process is typable.

Subtyping relation

We assume a countable set of roles R, and use r to range over elements of R. Let
(R,v) be a lattice and let ⊥,> ∈ R be its bottom and top element, respectively. By
α, ρ, σ we denote non-empty sets of roles and by τ, ζ sets of roles containing the >
element. We introduce a pre-order relation on value types in order to expand a domain
of values that channels can communicate. With this aim, we have enriched the set of
value types from [3] with the type of channels emitting values and with the type of
channels receiving values as in [8, 9]. The types are presented in Table 1. Tv ranges
over value types where as a value we consider either a channel name, a script, a location
name, a path or a tree.

Table 1. The Syntax ofrXdπ Types

Ch(Tv) type of channels communicating values of type Tv
Ch!(Tv) type of channels emitting values of type Tv
Ch?(Tv) type of channels receiving values of type Tv
Loc(P) type of locations with the policy P
Script(P) type of scripts which can be activated at locations with the policy P
Path(α) type of paths having the last edge with the set of roles α
Pointer(α) type of pointers whose path is typed by Path(α)
Tree(P, τ, ζ) type of trees, which can stay at locations with the policy P , with initial

branches asking τ and which can be completely accessed by processes
with at least one role of ζ

Proc(P, ρ) type of pure processes, which can stay at locations with the policy P and
which can be assigned roles ρ

ProcRole(P) type of processes with roles which can stay at locations with the policy P

The subtyping rule
Γ ` v : Tv1 Tv1 ≺ Tv2

Γ ` v : Tv2

states that if Tv1 is subtype of Tv2, then a value of type Tv1 is also of type Tv2. The
subtyping relation is such that if a channel can communicate values of type Tv then it
can do both, emit and receive the values. Any channel that is receiving values of some
type can be regarded as a channel receiving higher values. Any channel that is emitting
values of some type can be regarded as a channel emitting lower values. The type of
a location with the policy P1 is lower then the type of a location with policy P2 if P2

is less restrictive then P1. If a script can be activated at a location then it can also be

145

activated at any bigger location. A path having the last edge with a set of roles α1 can
be regraded as having at last edge any set of bigger or equal roles to those from α1.
Suppose that we are given a tree that can stay at a location of some policy P, with
initial branches asking τ1 and that can be completely accessed by a process with at least
one role from ζ1. We can say that its initial branches are also asking set of roles that are
greater than or equal to ζ1 and it can be completely accessed by processes with roles
greater or equal to ζ1.

By extending the proof from [3], we can prove that the system satisfies the subject
reduction and other relevant properties of well behaved processes. We proved in [3] that
processes can communicate only values with at least one characteristic role lower than
equal to a role of the process. The subtyping relation implies that channels emitting
a value of type can also emit all the values that are of smaller type with respect to the
relation. The channels receiving values of a type can also receive values that have bigger
types.

Conclusions and related work

In this paper a notion of subtyping is added to the type system of the rXdπ-calculus
and it is demonstrated that subtyping increases the flexibility of types. The type systems
and calculi discussed here strongly relies on [3] and is most related to [4, 1] and [2].
Input and output types are those from [8, 9]

Acknowledgment. This work has been supported by the Serbian Ministry of Education
and Science (projects ON174026 and III44006) and Provincial Secretariat for Science
and Technological Development of Province of Vojvodina. ICTCS reviewers have pro-
vided useful comments.

References
1. Chiara Braghin, Daniele Gorla, and Vladimiro Sassone. Role-based access control for a dis-

tributed calculus. Journal of Computer Security, 14(2):113–155, 2006.
2. Adriana B. Compagnoni, Elsa L. Gunter, and Philippe Bidinger. Role-based access control

for boxed ambients. Theoretical Computer Science, 398(1-3):203–216, 2008.
3. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšic, and Jovanka Pantovic.

Types for Role-Based Access Control of Dynamic Web Data. In WFLP’10, volume 6559
of LNCS, pages 1–29. Springer, 2011.

4. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Jovanka Pantovic, and Daniele Varacca. Se-
curity types for dynamic web data. Theoretical Computer Science, 402(2-3):156–171, 2008.

5. Philippa Gardner and Sergio Maffeis. Modelling dynamic web data. Theoretical Computer
Science, 342(1):104–131, 2005.

6. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173(1):82–120, 2002.

7. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

8. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5):409–453, 1996.

9. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

146

Converting Nondeterministic Automata and
Context-Free Grammars into Parikh Equivalent

Deterministic Automata?

(Extended Abstract)

Giovanna J. Lavado1, Giovanni Pighizzini1, and Shinnosuke Seki2

1 Dipartimento di Informatica, Università degli Studi di Milano
via Comelico 39, I-20135, Milano, Italy

giovanna.lavado@unimi.it

giovanni.pighizzini@unimi.it
2 Department of Information and Computer Science, Aalto University,

P.O. Box 15400, FI-00076, Aalto, Finland
shinnosuke.seki@aalto.fi

Abstract. We investigate the conversion of nondeterministic finite au-
tomata and context-free grammars into Parikh equivalent deterministic
finite automata, from a descriptional complexity point of view.
We prove that for each nondeterministic automaton with n states there

exists a Parikh equivalent deterministic automaton with eO(
√

n·lnn) states.
Furthermore, this cost is tight. In contrast, if all the strings accepted by
the given automaton contain at least two different letters, then a Parikh
equivalent deterministic automaton with a polynomial number of states
can be found.
Concerning context-free grammars, we prove that for each grammar in
Chomsky normal form with n variables there exists a Parikh equivalent

deterministic automaton with 2O(n2) states. Even this bound is tight.

1 Introduction

It is well-known that the state cost of the conversion of nondeterministic finite
automata (NFAs) into equivalent deterministic finite automata (DFAs) is expo-
nential: using the classical subset construction [10], from each n-state NFA we
can build an equivalent DFA with 2n states. Furthermore, this cost cannot be
reduced.

In all examples witnessing such a state gap (e.g., [5–7]), input alphabets
with at least two letters and proof arguments strongly relying on the structure
of strings are used. As a matter of fact, for the unary case, namely the case

of the one letter input alphabet, the cost reduces to eΘ(
√
n·lnn), as shown by

Chrobak [1].

? Paper accepted at the 16th International Conference on Developments in Language
Theory. In H.–C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 284–295.
Springer (2012)

147

What happens if we do not care of the order of symbols in the strings, i.e.,
if we are interested only in obtaining a DFA accepting a set of strings which are
equal, after permuting the symbols, to the strings accepted by the given NFA?

This question is related to the well-known notions of Parikh image and Parikh
equivalence [8]. Two strings over a same alphabet Σ are Parikh equivalent if and
only if they are equal up to a permutation of their symbols or, equivalently, for
each letter a ∈ Σ the number of occurrences of a in the two strings is the same.
This notion extends in a natural way to languages (two languages L1 and L2 are
Parikh equivalent when for each string in L1 there is a Parikh equivalent string
in L2 and vice versa) and to formal systems which are used to specify languages
as, for instance, grammars and automata. Notice that in the unary case Parikh
equivalence is just the standard equivalence. So, in the unary case, the answer
to our previous question is given by the above mentioned result by Chrobak.

Our first contribution in this paper is an answer to that question in the
general case. In particular, we prove that the state cost of the conversion of
n-state NFAs into Parikh equivalent DFAs is the same as in the unary case,

i.e., it is eΘ(
√
n·lnn). More surprisingly, we prove that this is due to the unary

parts of languages. In fact, we show that if the given NFA accepts only nonunary
strings, i.e., each accepted string contains at least two different letters, then we
can obtain a Parikh equivalent DFA with a polynomial number of states in n.
Hence, while in standard determinization the most difficult part (with respect
to the state complexity) is the nonunary one, in the “Parikh determinization”
this part becomes easy and the most complex part is the unary one.

In the second part of the paper we consider context-free grammars (CFGs).
Parikh Theorem [8] states that each context-free language is Parikh equivalent
to a regular language. We study this equivalence from a descriptional complexity
point of view. Recently, Esparza, Ganty, Kiefer, and Luttenberger proved that
each context-free grammar in Chomsky normal form (CNFG) with h variables
can be converted into a Parikh equivalent NFA with O(4h) states [2]. In [4] it
was proven that if G generates a bounded language then we can obtain a DFA

with 2h
O(1)

states, i.e., a number exponential in a polynomial of the number of
variables. In this paper, we are able to extend such a result by removing the
restriction to bounded languages. We also reduce the upper bound to 2O(h2).
A milestone for obtaining such a result is the conversion of NFAs to Parikh
equivalent DFAs presented in the first part of the paper. By suitably combining
that result (in particular the polynomial conversion in the case of NFAs accepting
nonunary strings) with the above mentioned result from [2] and with a result
by Pighizzini, Shallit, and Wang [9] concerning the unary case, we prove that
each context-free grammar in Chomsky normal form with h variables can be
converted into a Parikh equivalent DFA with 2O(h2) states. From the results
concerning the unary case, it follows that this bound is tight.

Even for this simulation, as for that of NFAs by Parikh equivalent DFAs, the
main contribution to the state complexity of the resulting automaton is given
by the unary part.

148

2 From NFAs to Parikh equivalent DFAs

In this section we present our first main contribution. From each n-state NFA A

we derive a Parikh equivalent DFA A′ with eO(
√
n·lnn) states. Furthermore, we

prove that this cost is tight.

Actually, as a preliminary step we obtain a result which is interesting per se
(Theorem 1): if each string accepted by the given NFA A contains at least two
different symbols, i.e., it is nonunary, then the Parikh equivalent DFA A′ can be
obtained with polynomially many states. Hence, the superpolynomial blowup is
due to the unary part of the accepted language.

The proof of Theorem 1 gives a construction which uses a normal form for
the Parikh image of the languages accepted by NFAs. Such a form is a refinement
of a form presented in [3, 11].

Theorem 1. For each n-state NFA accepting a language none of whose words
are unary, there exists a Parikh equivalent DFA with a number of states polyno-
mial in n.

For the unary part, the following result proved by Chrobak in 1986 is useful.

Theorem 2 ([1]). The state cost of the conversion of n-state unary NFAs into

equivalent DFAs is eΘ(
√
n·lnn).

Theorem 1 and Theorem 2 are useful to study the general case. From a given
n-state NFA A with input alphabet Σ = {a1, a2, . . . , am}, for each i = 1, . . . ,m,
we first build an n-state NFA Ai accepting the unary language L(A)∩a∗i . Using

Theorem 2, we convert Ai into an equivalent DFA A′i with eO(
√
n·lnn) states.

We can also build an O(n)-state NFA A0 accepting all the nonunary strings
belonging to L(A). The NFA A0 can be converted into a Parikh equivalent DFA
An with a number of states polynomial in n. Using standard constructions, we
combine DFAs A′1, . . . , A

′
m and An to finally obtain a DFA accepting a language

Parikh equivalent to the language accepted by the original NFA A and with a
number of states polynomial in n.

From this argument and from the optimality of the upper bound for the
unary case (Theorem 2) we obtain the following result.

Theorem 3. For each n-state NFA, there exists a Parikh equivalent DFA with

eO(
√
n·lnn) states. Furthermore, this cost is tight.

3 From CFGs to Parikh Equivalent DFAs

In this section we extend the results of Section 2 to the conversion of CFGs in
Chomsky normal form to Parikh equivalent DFAs. Actually, Theorem 1 will play
an important role in order to obtain the main result of this section.

149

Even in this case the proof is given by splitting the unary and the nonunary
parts of the language under consideration, converting the corresponding gram-
mars into Parikh equivalent DFAs and, finally, recombining the DFAs so obtained
into a DFA.

For the unary part, the conversion is done by using a result from [9] stating
that for any CNFG with h variables that generates a unary language, there exists
an equivalent DFA with less than 2h

2

states.
For the nonunary part, we first use a result from [2] stating that for a CNFG

with h variables there exists a Parikh equivalent NFA with O(4h) variables.
Then, we apply the construction used to prove Theorem 1 to the resulting NFA.

Theorem 4. For any CNFG with h variables, there exists a Parikh equivalent
DFA with at most 2O(h2) states.

We finally observe that in [9] it was proven that there is a constant c > 0 such
that for infinitely many h > 0 there exists a CNFG with h variables generating
a unary language such that each equivalent DFA requires at least 2ch

2

states.
This implies that the upper bound given in Theorem 4 cannot be improved.

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149–158 (1986), corrigendum, ibid. 302 (2003) 497-498

2. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and
direct automaton construction. Information Processing Letters 111(12), 614–619
(2011)

3. Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applica-
tions. In: Symposium on Login in Computer Science. pp. 80–89 (2010)

4. Lavado, G.J., Pighizzini, G.: Parikh’s theorem and descriptional complexity. In:
Proceedings of SOFSEM 2012. LNCS, vol. 7147, pp. 361–372. Springer (2012)

5. Lupanov, O.: A comparison of two types of finite automata. Problemy Kibernet
9, 321–326 (1963), (in Russian). German translation: Über den Vergleich zweier
Typen endlicher Quellen, Probleme der Kybernetik 6, 329–335 (1966)

6. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: FOCS. pp. 188–191. IEEE (1971)

7. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C-20(10), 1211–1214 (1971)

8. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
9. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown

automata, descriptional complexity and auxiliary space lower bounds. Journal of
Computer and System Sciences 65(2), 393–414 (2002)

10. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

11. To, A.W.: Parikh images of regular languages: Complexity and applications (Febru-
ary 2010), arXiv:1002.1464v2

150

Hoare Logic for Multiprocessing
(work in progress)

Marina Lenisa and Daniel Pellarini

UNIUD, Italy

marina.lenisa@uniud.it,daniel.pellarini@gmail.coms

In the traditional approach of Hoare logic, the operational semantics of concurrent pro-
grams is explained via the interleaving transition rule. This reflects the execution on
a single processor, where atomic actions of parallel components are interleaved and
sequentially executed, and it does not directly account for multiprocessing systems.

Here we depart from the traditional approach, and we introduce a new parallel op-
erator whose operational semantics directly reflects the execution on a multiprocessing
system, where disjoint atomic actions of program components are executed in parallel.

Then, we develop a technique for verifying concurrent programs in this setting, in-
spired by the traditional Owicki-Gries method, see e.g. [1]. In the multiprocessing set-
ting, the above technique substantially simplifies, by only requiring local interference
freedom, in place of global interference freedom between the proof outlines of parallel
components. We plan to implement a tool for the verification of the local interference
freedom; this could then be used in combination with a tool for verifying sequential
components, such as Why3 [2], for verifying concurrent programs.

Coalgebraically (or game-theoretically), the new parallel operator can be interpreted
as a kind of conjunctive sum, where each action consists of concurrent actions in more
components. More in general, it would be interesting to explore what kind of parallelism
corresponds to notions of sums alternative to the interleaving sum, which arise in the
theory of coalgebras and games, [3–5].

The Language.
We focus on the language for parallel programs with synchronization Lpar, whose syn-
tax is defined as follows:

Definition 1 (Syntax).
(Lpar 3)S ::= skip | x := t | S1; S2 | await B then S end | if B then S1 else S2 fi |

while B do S1 od | [S1 ||| . . . ||| Sn]
where

– x, y, . . . are variables;
– t is an expression built over a standard language for integer and boolean expres-

sions;
– B is a boolean expression;
– programs not containing the ||| operator are called (sequential) components;
– the program S in the conditional atomic section await B then S end contains

neither the ||| operator nor while subprograms;
– the components S1, . . . , Sn in the parallel composition [S1 ||| . . . ||| Sn] do not

contain the ||| operator.

151

We assume an abstract level of granularity of our language, so as skip, assignment,
and the evaluation of an if/while-guard are considered as atomic actions, as well as
conditional atomic sections. The latter is executed in mutual exclusion, i.e. the guard
B of a command awaitB thenS end is evaluated in the current state and, if it is true,
then S is executed atomically with the evaluation of B, and in mutual exclusion.

Formally, the transition system of the language Lpar is defined by a set of rules
for deriving judgements of the shape 〈S, σ〉 → 〈S′, σ′〉, where σ ∈ Σ is a state, i.e.
a function from variables to values. The transition system that we consider includes
the usual transition rules for the components (see [1], Chapter 9), but it differs from
the standard one because the rule for interleaving is replaced by the rule for parallel
execution of atomic actions: at each step, in a parallel program [S1 ||| . . . ||| Sn], a
maximal set of disjoint atomic actions in the components is executed. Informally, two
components, S1 and S2, execute disjoint atomic actions if the variables modified in
the next atomic command/guard of each component are not used in the next atomic
command/guard of the other. That is no written variable can be shared in the actions
executed by the two components; conditional atomic regions cannot be executed in
parallel with any other component.

In the following, for states σ, τ and X set of variables, we denote by σ = τ mod X
the fact that the states σ and τ coincide on all variables but those in X .

Definition 2 (Parallel Transition Rule).
(i) Let τ1 = σ mod X , τ2 = σ mod Y , for X ∩ Y = ∅. We define the state τ1] τ2 by

(τ1] τ2)(x) =





σ(x) if x /∈ X ∪ Y
τ1(x) if x ∈ X
τ2(x) if x ∈ Y

(ii) Parallel transition rule:

{< Si, σ > −→ < S′
i, τi >}i∈I

< [S1 ||| . . . ||| Sn], σ > −→ < [T1 ||| . . . ||| Tn],
⊎n

i=1 τi >

where {Si}i∈I is a maximal set of components executing disjoint atomic actions, and

Ti =

{
Si if i /∈ I
S′
i if i ∈ I .

With the above parallel transition rule we make two implicit assumptions. First,
we assume that the number of processors available is not bounded, or at least not less
than the maximum number of components which can execute disjointly. Possibly, one
can impose a limitation on the number of components which can execute in parallel,
according to the number of processors, but this will not change the theory, and hence,
for simplicity, we work without this assumption. The second implicit assumption is that
all atomic actions, being executed in parallel on different processors, have the same
“cost” in terms of execution time.

Notice that, the final states generated by computations arising with the interleaving
rule are in general more than those induced by computations arising with the paral-
lel transition rule. Namely, with the latter, maximal sets of disjoint atomic actions are
forced to be executed at each step, and hence not all interleaving executions are com-
patible. This will be exploited in order to simplify the verification of parallel programs.

2

152

Verification of Concurrent Programs.
The standard technique due to Owicki-Gries for the verification of concurrent programs
is based on the construction of standard proof outlines for the components, i.e. proof
outlines where each atomic command or atomic region is preceded by exactly one as-
sertion, and on the control of interference-freedom between these proof outlines. Intu-
itively, this latter step substantially simplifies in our multiprocessing setting, because
of the parallelism constraints. In the following, we propose a technique for verifying
concurrent programs in our setting. After having built standard proof outlines for com-
ponents in the usual way, we proceed as follows:
1. We build the graph of abstract computations of the parallel program; by an ab-

stract computation we mean a computation where we forget about the states, and
we only account for the sequence of programs that we reach by executing the orig-
inal program, and for the atomic actions/conditional section executed at each step
(see Definition 3 below). Each node in the graph of abstract computations repre-
sents a point in the parallel program reached during its execution, and it is labeled
by the sequence of corresponding assertions annotating the proof outlines of the
components. The arcs in the graph will be labeled by the sequence of atomic com-
mands/guards or by the conditional atomic action executed at that step. Notice that
the graph has a finite number of nodes.

2. Once the graph of abstract computations has been built, the proof of interference
freedom between the proof outlines of the components reduces to a local check of
non interference between the assertions labeling a node and the sequence of atomic
actions or the atomic section labeling the outgoing arcs.

The graph of abstract computations.

Definition 3 (Abstract Transition System and Computation).
(i) The abstract transition system consists of rules for deriving judgements S l−→ S′,
where l is a label representing (a sequence of) atomic commands/guards/sections or
the empty action ε (representing a computation that doesn’t perform any action in that
specific computation step), i.e.:

l ::= skip | x := t | B | ε | await B then S end | 〈l1, . . . , ln〉 .

The abstract transition rules are the following:

skip
skip−−−→ E x := t

x:=t−−−→ E S
ε−→ S

awaitB thenS end
awaitB thenS end−−−−−−−−−−−−→ E

S1
l1−→ S

′
1

S1;S2
l1−→ S

′
1;S2

if B thenS1 else S2 fi
B−→ S1 if B thenS1 else S2 fi

¬B−−→ S2

whileB doS od
¬B−−→ E whileB doS od

B−→ S;whileB doS od

3

153

{Si
li−→ S′

i}i∈I

[S
′
1 ||| . . . ||| Sn]

<l′1,...,l
′
n>−−−−−−−→ [S

′
1 ||| . . . ||| S

′
n]

where {Si}i∈I is a maximal set of components executing disjoint atomic actions and

l′i =

{
li if i ∈ I
ε if i 6∈ I .

(ii) An abstract computation is a (finite or infinite) sequence S l1−→ S1
l2−→ . . .

ln−→ Sn . . .

Notice that in all abstract computations, even the infinite ones, only finitely many
different programs can appear.

Now we sketch how to define the (finite rooted) graph representing the abstract
computations generating from a program S = [S1||| . . . |||Sn]. Each node n repre-
sents a point in the computation of S, and it is labeled by the n-tuple of assertions
〈p1j1 , . . . , pnjn〉 appearing in the proof outlines at that point. The construction of the
graph starts from the root n, which is labeled with the initial assertions, and proceeds
by analyzing, for each created node n′, the abstract transitions arising from the corre-

sponding program [S′
1 ||| . . . ||| S′

n]: for each transition [S′
1 ||| . . . ||| S′

n]
<l1,...,ln>−−−−−−−→

[S′′
1 ||| . . . ||| S′′

n], a new node n′′ is built, if it does not already exists, corresponding
to [S′′

1 ||| . . . ||| S′′
n], and an arc is drawn from n′ to n′′, labeled by 〈l1, . . . , ln〉. Some

optimizations can be performed during the graph construction, by avoiding to represent
transitions corresponding to the evaluation of a guard which is not compatible with the
current assertions.

Local interference freedom. Once the graph of abstract computations has been built,
the non-interference checks can be performed at a local level. That is, for any node n,
for any outgoing arc and any atomic action appearing in its label and in the proof outline
of a component, it is sufficient to check that this atomic action does not interfere with
the assertions of the node n, which appear in the proof outlines of other components.

Coalgebraically speaking, this new parallel operator can be interpreted as a kind of
conjunctive sum, where each action consists of concurrent actions in more components.
This is currently being studied as a natural continuation of this work.

References

1. K. Apt, F. de Boer, E. Olderog. Verification of Sequential and Concurrent Programs,
Springer, 2009.

2. F. Bobot, J-C. Filliâtre, C. Marché. G. Melquiond, A. Paskevich, The Why3 Platform, Version
0.72, May 2012, available at http://why3.lri.fr/#documentation.

3. J.H. Conway. On Numbers and Games, A K Peters Ltd, 2001.
4. F. Honsell, M. Lenisa. Conway Games, algebraically and coalgebraically, Logical Methods

in Computer Science 7(3), 2011.
5. F. Honsell, M. Lenisa, R. Redamalla. Equivalences and Congruences on Infinite Conway

Games, Theoretical Informatics and Applications 46(2), 231–259, 2012.

4

154

Size constrained clustering problems in fixed
dimension

Jianyi Lin

Dipartimento di Informatica, Università degli Studi di Milano, Italy
jianyi.lin@unimi.it

Extended Abstract

Clustering or cluster analysis [1] is a classical method in unsupervised learning
and one of the most used techniques in statistical data analysis. Clustering has a
wide range of applications in many areas like pattern recognition, medical diag-
nostics, data mining, biology, market research and image analysis among others.
A cluster is a set of data points that in some sense are similar to each other, and
clustering is a process of partitioning a data set into disjoint clusters. In distance
clustering, the similarity among data points is obtained by means of a distance
function.

Fixed a norm ‖ ‖p (p ≥ 1), the clustering problem consists in finding for a
finite point set X ⊂ Qd and an integer k, a k-partition {A1, ..., Ak} of X that
minimizes the cost function

W (A1, ..., Ak) =

k∑

i=1

∑

x∈Ai

‖x− CAi
‖pp (1)

where CAi
is the p-centroid of Ai, i.e.

CAi
= arg min

µ

∑

x∈Ai

‖x− µ‖pp

Distance clustering is a difficult problem. For an arbitrary dimension d, as-
suming the Euclidean norm (p = 2), the problem is NP-hard even if the number
k of clusters equals 2 [2]; the same occurs if d = 2 and k is arbitrary [3,4]. For
the Euclidean distance, a well-known heuristic is Lloyd’s algorithm [5,6], also
known as the k-Means Algorithm; however there is no guarantee that the solu-
tion yielded by this procedure approximates the global optimum. This algorithm
is usually very fast, but it can require exponential time in the worst case [7].

In real-world problems, often people have some information on the clusters:
incorporating this information into traditional clustering algorithms can increase
the clustering performance. Problems that include background information are
called constrained clustering problems and are divided in two classes.

155

On the one hand, clustering problems with instance-based constraints typi-
cally comprise a set of must-link constraints or cannot-link constraints [8], defin-
ing pairs of elements that must be included, respectively, in the same cluster or
in different clusters.

On the other hand, clustering problems with cluster-based constraints [9,10]
incorporate constraints concerning the size of the possible clusters. Recently,
in [11] cluster size constraints are used for improving clustering accuracy; this
approach, for instance, allows one to avoid extremely small or large clusters in
standard cluster analysis.

Here we study a constrained clustering problem where the size of clusters
is included in the instance. This problem, called Size Constrained Clustering
Problem (SCC), is formally defined as follows: given a set X ⊂ Qd of n points

and k many positive integers m1, ...,mk such that
∑k

1 mi = n, find a k-partition
{A1, ..., Ak} ofX that minimizes the cost functionW (A1, ..., Ak) such that |Ai| =
mi for each i = 1, ..., k. This problem was studied in [12,13] and it is known to
be a difficult problem. More precisely, the following results hold [13]:

1) For every norm ‖ ‖p with p > 1, SCC with fixed clustering size k is NP-hard,
even in the case k = 2 and m1 = m2 = n

2 .
2) For every norm ‖ ‖p with p ≥ 1, SCC with fixed dimension d is NP-hard,

even in the case d = 1.

As a consequence, we can’t expect to obtain a polynomial-time algorithm for
solving the general SCC problem.

In this paper we investigate SCC in the plane (d = 2) with a fixed clustering
size k = 2. In particular, we consider the following two problems:
• 2-SCC in the Plane:
Given a point set X = {x1, ..., xn} ⊂ Q2 and a positive integer m ≤ n

2 , find a
2-partition {A, Ā} of X with |A| = m, |Ā| = n−m, that minimizes

W (A, Ā) =
∑

x∈A
‖x− CA‖22 +

∑

x∈Ā
‖x− CĀ‖22

where CA and CĀ are the centroid of A and Ā respectively.
• Full 2-SCC in the Plane:
Given a point set X = {x1, ..., xn} ⊂ Q2, for all integers m, 1 ≤ m ≤ n

2 , find the
optimal 2-partition πm = {Am, Ām}, with |Am| = m.

The main results we obtain are the following:

1) There is an algorithm for solving Full 2-SCC in the Plane in time O(n2·log n).
2) There is an algorithm for solving 2-SCC in the Plane in time O(n 3

√
m·log2 n).

It should be observed that, the algorithm for solving 2-SCC in the plane requires
the application of methods for enumerating the k-sets of a collection of points
in the plane, which is a challenging problem [14] in combinatorial geometry.

156

Here we also study the problem 2-SCC in fixed dimension d. First, we use a
separation result [13] stating that if {A, Ā} is an optimal solution of an instance
of the 2-SCC problem, then A and Ā are separated by an hypersurface of the
form

‖x− α‖pp − ‖x− β‖pp = c

for some constant parameters α, β ∈ Rd, c ∈ R. By applying a suitable method
for decomposing the parameter space R2d+1, one can compute a set of optimal
2-partitions πm = {Am, Ām} such that |Am| = m, for m = 1, ..., bn2 c. This allows
us to design an algorithm for the Full 2-SCC problem in fixed dimension d that
works in polynomial time both in n and p. To obtain this result we make use
of concepts and methods of real algebraic geometry, and in particular we apply
the cylindrical algebraic decomposition [15].

In this work we also study another variant of the clustering problem, called
Relaxed Constraints Clustering Problem (RCC), which is defined as follows: given
a point set X = {x1, ..., xn} ⊂ Qd, an integer k > 1 and a finite setM of positive
integers, find a k-partition {A1, ..., Ak} of X with

|Ai| ∈ M for all i = 1, ..., k

that minimizes the cost function

W (A1, ..., Ak) =

k∑

i=1

∑

x∈Ai

‖x− CAi
‖pp.

We prove that for the euclidean norm ‖ ‖2, the decision version of RCC in
dimension d = 2 is NP-complete even in the case M = {2, 3}. On the contrary,
RCC in dimension 1 is known to be solvable in polynomial time by a dynamic
programming technique [12].

Acknowledgements

The author wishes to acknowledge helpful discussions with Alberto Bertoni and
Massimiliano Goldwurm.

References

1. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. 2nd edn. Springer-Verlag (2009)

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Machine Learning 75 (2009) 245–249

3. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The Planar k-Means Problem is
NP-Hard. In Das, S., Uehara, R., eds.: WALCOM: Algorithms and Computation.
Volume 5431 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
(2009) 274–285

4. Vattani, A.: The hardness of k-means clustering in the plane. manuscript (2009)

157

5. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2) (1982) 129–137

6. MacQueen, J.B.: Some method for the classification and analysis of multivariate
observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical
Structures. (1967) 281–297

7. Vattani, A.: K-means requires exponentially many iterations even in the plane. In:
Proceedings of the 25th Symposium on Computational Geometry (SoCG). (2009)

8. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. of
the 17th Intl. Conf. on Machine Learning. (2000) 1103–1110

9. Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained K-Means Clustering. Tech-
nical Report MSR-TR-2000-65, Miscrosoft Research Publication (May 2000)

10. Tung, A., Han, J., Lakshmanan, L., Ng, R.: Constraint-Based Clustering in Large
Databases. In Van den Bussche, J., Vianu, V., eds.: Database Theory ICDT 2001.
Volume 1973 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
(2001) 405–419

11. Zhu, S., Wang, D., Li., T.: Data clustering with size constraints. Knowledge-Based
Systems 23(8) (2010) 883–889

12. Saccà, F.: Problemi di Clustering con Vincoli: Algorithmi e Complessità. PhD
thesis, University of Milan, Milan (2010)

13. Bertoni, A., Goldwurm, M., Lin, J., Saccà, F.: Size Constrained Distance Cluster-
ing: Separation Properties and Some Complexity Results. Fundamenta Informat-
icae 115(1) (2012) 125–139

14. Erdős, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point
sets. In: A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State
Univ., Fort Collins, Colo., 1971). North-Holland, Amsterdam (1973) 139–149

15. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Al-
gebraic Decomposition. In Barkhage, E., ed.: Proc. 2nd GI Conf. on Automata
Theory and Formal Lang. Volume 33 of LNCS., Berlin, Springer (1975) 134–183

158

Automata and Logic for Floyd Languages

Violetta Lonati1, Dino Mandrioli2, Matteo Pradella2

1 DSI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@dsi.unimi.it

2 DEI - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{dino.mandrioli, matteo.pradella}@polimi.it

Floyd languages (FL), as we renamed Operator Precedence Languages after their in-
ventor, were originally introduced to support deterministic parsing of programming and
other artificial languages [1]; then, interest in them decayed for several decades, prob-
ably due to the advent of more expressive grammars, such as LR ones [2] which also
allow for efficient deterministic parsing.

In another context Visual Pushdown Languages (VPL) have been introduced and in-
vestigated [3] with the main motivation to extend to them the same or similar automatic
analysis techniques -noticeably, model checking- that have been so successful for reg-
ular languages. Recently we discovered that VPL are a proper subclass of FL, which in
turn enjoy the same properties that make regular and VP languages amenable to extend
to them typical model checking techniques; in fact, to the best of our knowledge, FL
are the largest family closed w.r.t. Boolean operation, concatenation, Kleene * and other
classical operations [4]. Another relevant feature of FL is their “locality property”, i.e.,
the fact that partial strings can be parsed independently of the context in which they oc-
cur within a whole string. This enables more effective parallel and incremental parsing
techniques than for other deterministic languages.

Originally, Floyd languages were defined in terms of grammars. In this work we
present an appropriate automata family that recognizes exactly FL [5], together with a
complete characterization of FL in terms of a suitable Monadic Second-Order (MSO)
logic [6]. In this way, as well as with regular and VP languages, one can, for in-
stance, state a language property by means of a MSO formula, then automatically verify
whether a given FA accepts a language that enjoys that property.

Operator precedence alphabet and chains

Let Σ = {a1, . . . , an} be an alphabet. The empty string is denoted ε. We use a special
symbol # not in Σ to mark the beginning and the end of any string. This is consistent
with the typical operator parsing technique that requires the look-back and look-ahead
of one character to determine the next parsing action [2].

An operator precedence matrix (OPM) M over an alphabet Σ is a partial function
(Σ ∪ {#})2 → {l,�,m}, that with each ordered pair (a, b) associates the OP relation Ma,b

holding between a and b. We call the pair (Σ,M) an operator precedence alphabet (OP).
Relations l,�,m, are named yields precedence, equal in precedence, takes precedence,
respectively. By convention, the initial # can only yield precedence, and other symbols
can only take precedence on the ending #.

159

If Ma,b = ◦, where ◦ ∈ {l,�,m}, we write a◦b. For u, v ∈ Σ∗ we write u◦v if u = xa and
v = by with a ◦ b. M is complete if Ma,b is defined for every a and b in Σ. Moreover in
the following we assume that M is �-acyclic, which means that c1 � c2 � . . . � ck � c1
does not hold for any c1, c2, . . . ck ∈ Σ, k ≥ 1. See [7,4,5] for a discussion on this
hypothesis.

Given an OP alphabet, the OPM M assigns a structure to strings in Σ∗, i.e., a string
can be uniquely associated with a tree.

A simple chain is a string c0c1c2 . . . c`c`+1, written as c0 [c1c2 . . . c`]c`+1 , such that:
c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . `, and c0 l c1 � c2 . . . c`−1 � c` m c`+1.
A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where c0 [c1c2 . . . c`]c`+1 is a sim-
ple chain, and si ∈ Σ∗ is the empty string or is such that ci [si]ci+1 is a chain (simple
or composed), for every i = 0, 1, . . . , `. Such a composed chain will be written as
c0 [s0c1s1c2 . . . c`s`]c`+1 . A string s ∈ Σ∗ is compatible with the OPM M if #[s]# is a
chain.

Floyd automata

Floyd automata are stack-based automata perfectly carved on the generation mechanism
of the traditional Floyd grammars [1]. Not surprisingly they inherit some features of
VPA (mainly a clear separation between push and pop operations) and maintain some
typical behavior of shift-reduce parsing algorithms [2]; however, they also exhibit some
distinguishing features.

A nondeterministic Floyd automaton (FA) is a tuple A = 〈Σ,M,Q, I, F, δ〉 where:
(Σ,M) is a precedence alphabet, Q is a set of states (disjoint from Σ), I, F ⊆ Q are sets
of initial and final states, respectively, δ : Q × (Σ ∪ Q) → 2Q is the transition function.
The transition function is the union of two disjoint functions: δpush : Q × Σ → 2Q and
δflush : Q × Q→ 2Q.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are
called marked symbols. Let Γ = (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q],
[a′q], or [# q], respectively. We set smb([a q]) = smb([a′q]) = a, smb([# q]) = #, and
st([a q]) = st([a′q]) = st([# q]) = q.

A configuration of a FA is any pair C = 〈B1B2 . . . Bn, a1a2 . . . am〉, where Bi ∈ Γ
and ai ∈ Σ ∪ {#}. The first component represents the contents of the stack, while the
second component is the part of input still to be read.

A computation is a finite sequence of moves C ` C1; there are three kinds of moves,
depending on the precedence relation between smb(Bn) and a1:

(push) if smb(Bn) � a1 then C1 = 〈B1 . . . Bn[a1 q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(mark) if smb(Bn)la1 then C1 = 〈B1 . . . Bn[a1

′q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(flush) if smb(Bn) m a1 then let i be the greatest index such that smb(Bi) ∈ Σ′ and
C1 = 〈B1 . . . Bi−2[smb(Bi−1) q], a1a2 . . . am〉, with q ∈ δ f lush(st(Bn), st(Bi−1)).

Push and mark moves both push the input symbol on the top of the stack, together
with the new state computed by δpush; such moves differ only in the marking of the
symbol on top of the stack. The flush move is more complex: the symbols on the top of
the stack are removed until the first marked symbol (included), and the state of the next

160

symbol below them in the stack is updated by δ f lush according to the pair of states that
delimit the portion of the stack to be removed; notice that in this move the input symbol
is not consumed and it remains available for the following move.

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =

{
x | 〈[# qI], x#〉 ∗` 〈[# qF], #〉, qI ∈ I, qF ∈ F

}
.

The chains fully determine the structure of the parsing of any automaton over
(Σ,M). Indeed, if the automaton performs the computation 〈[a q0], sb〉 ∗` 〈[a q], b〉,
then a[s]b is necessarily a chain over (Σ,M) and the first move in the above compu-
tation is a mark from state q0, whereas the last one is a flush towards state q labelled
by q0. Such a computation corresponds to the parsing by the automaton of the string
s0c1 . . . c`s` within the context a,b; this context contains all information needed to build
the subtree whose frontier is that string. This is a distinguishing feature of FL, not shared
by other deterministic languages: we call it the locality principle of Floyd languages.

In other terms, given an OP alphabet, the OPM M assigns a structure to any string
in Σ∗ compatible with M; a FA defined on the OP alphabet selects an appropriate subset
within such a “universe”. In some sense this property is yet another variation of the
fundamental Chomsky-Shützenberger theorem.

Logic characterization of Floyd languages

Our characterization of FL in terms of a suitable Monadic Second Order (MSO) logic
follows the approach originally proposed bu Büchi for regular languages and subse-
quently extended by Alur and Madhusudan for VPL. The essence of the approach con-
sists in defining language properties in terms of relations between the positions of char-
acters in the strings: first order variables are used to denote positions whereas second
order ones denote subsets of positions; then, suitable constructions build an automaton
from a given formula and conversely, in such a way that formula and corresponding
automaton define the same language. The extension designed by [3] introduced a new
basic binary predicate { in the syntax of the MSO logic, x { y representing the fact
that in positions x and y two matching parentheses –named call and return, respectively
in their terminology– are located. In the case of FL, however, we have to face new
problems.

Both finite state automata and VPA are real-time machines, i.e., they read one input
character at every move; this is not the case with more general machines such as FA,
which do not advance the input head when performing flush transitions, and may also
apply many flush transitions before the next push or mark which are the transitions
that consume input. As a consequence, whereas in the logic characterization of regular
and VP languages any first order variable can belong to only one second order variable
representing an automaton state, in this case –when the automaton performs a flush–
the same position may correspond to different states and therefore belong to different
second-order variables.

In VPL the { relation is one-to-one, since any call matches with only one return,
if any, and conversely (with the exception of unmatched calls and returns, where many

161

call positions can be in relation with +infinite and symmetrically). In FL, instead the
same position y can be “paired” with different positions x in correspondence of many
flush transitions with no push/mark in between, as it happens for instance when pars-
ing a derivation such as A

∗⇒ αkA, consisting of k immediate derivations A ⇒ αA;
symmetrically the same position x can be paired with many positions y.

Consider an OP alphabet (Σ,M). We introduce a relation over positions of charac-
ters in any word s ∈ Σ∗. For 0 ≤ x < y ≤ |s| + 1, we say that (x, y) is a chain boundary
iff there exists a sub-string of #s# which is a chain a[r]b, such that a is in position x and
b is in position y. In general if (x, y) is a chain boundary, then y > x + 1, and a position
x may be in such a relation with more than one position and vice versa. Moreover, if s
is compatible with M, then (0, |s| + 1) is a chain boundary.

Let us define a countable infinite set of first-order variables x, y, . . . and a countable
infinite set of monadic second-order (set) variables X,Y, The MSOΣ,M (monadic
second-order logic over (Σ,M)) is defined by the following syntax:

ϕ := a(x) | x ∈ X | x ≤ y | xy y | x = y + 1 | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables and X is a set variable.
MSOΣ,M formulae are interpreted over (Σ,M) strings and the positions of their char-

acters in the following natural way: first-order variables are interpreted over positions
of the string; second-order variables are interpreted over sets of positions; a(x) is true
iff the character in position x is a; xy y is true iff (x, y) is a chain boundary; the other
logical symbols have the usual meaning.

A sentence is a formula without free variables. The language of all strings s ∈ Σ∗
such that #s# |= ϕ is denoted by L(ϕ) = {s ∈ Σ∗ | #s# |= ϕ}, where |= is the standard
satisfaction relation.

This characterization completes a research path that began more than four decades
ago and was resumed only recently with new -and old- goals. FL enjoy most of the
nice properties that made regular languages highly appreciated and applied to achieve
decidability and, therefore, automatic analysis techniques.

References

1. Floyd, R.W.: Syntactic analysis and operator precedence. Journ. ACM 10 (1963) 316–333
2. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
3. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56 (2009)
4. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property.

Journal of Computer and System Science (2012) to appear.
5. Lonati, V., Mandrioli, D., Pradella, M.: Precedence automata and languages. In Kulikov,

A.S., Vereshchagin, N.K., eds.: CSR. Volume 6651 of Lecture Notes in Computer Science.,
Springer (2011) 291–304

6. Lonati, V., Mandrioli, D., Pradella, M.: Logic characterization of Floyd languages. CoRR-
arXiv 1204.4639 (2012) http://arxiv.org/abs/1204.4639.

7. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence
languages. Information and Control 37 (1978) 115–133

162

The algebra and geometry of networks

Davide Maglia, N. Sabadini, Filippo Schiavio, and R.F.C. Walters

University of Insubria, Como, Italy

Networks of components have a compositional description in terms of the
algebra of symmetric or braided monoidal categories in which each object has
a commutative Frobenius or separable algebra structure compatible with the
tensor product. They also have a geometric description [11] - the free such algebra
(in the separable symmetric case) is the category of cospans of multigraphs,
arrows of which have a pictorial representation; in the Frobenius braided case
the geometry is more complicated, capturing not only the connection between
components but also their entanglement. These results are in the line introduced
by Penrose [1], and Joyal and Street [3], and were obtained by Sabadini and
Walters with collaborators Katis and Rosebrugh in earlier work, especially [6–9,
11, 12], beginning with the work on relations with Carboni [2] in 1987. The work
has numerous antecedents - we mention just S. Eilenberg, S.L. Bloom, Z. Esik,
Gh. Stefanescu. The algebra has connections with quantum field theory ([10]).

The present work presents two developments. The first is some initial work in
classifying tangled circuits; the second is a tool for composing cospans of graphs
and calculating executions of nets of parallel automata.

1 Tangled circuits

The free braided algebra of the type described above was introduced by Rose-
brugh, Sabadini and Walters [14] under the name Tangled Circuits since the
geometry captures not only the connection between components but their en-
tanglement.

A commutative Frobenius algebra in a braided monoidal category with twist
τ ([4]) consists of an object G and four arrows ∇ : G⊗G→ G, ∆ : G→ G⊗G,
n : I → G and e : G→ I making (G,∇, e) a monoid, (G,∆, n) a comonoid and
satisfying the equations

(1G ⊗∇)(∆⊗ 1G) = ∆∇ = (∇⊗ 1G)(1G ⊗∆) : G⊗G→ G⊗G
∇τ = ∇ : G⊗G→ G

τ∆ = ∆ : G→ G⊗G

A multigraph M consists of two sets M0 (objects, vertices or wires) and
M1 (arrows, edges or components) and two functions dom : M1 → M∗

0 and
cod : M1 →M∗

0 where M∗
0 is the free monoid on M0.

Given a multigraph M the free braided strict monoidal category in which
the objects of M are equipped with commutative Frobenius algebra structures
is called TCircDM . Its arrows are called tangled circuit diagrams, or more briefly

163

circuit diagrams. In the case that M has one vertex and no arrows we will denote
TCircDM simply as TCircD.

Determining whether two arrows are equal in this category is difficult since
it seems to include the problem of classifying knots as a special case. We present
some initial work in classifying a special class of arrows which we call blocked
braids, that is, an arrow of the form S ◦B ◦R where R : I → Xn (Xn the tensor
power of X), B : Xn → Xn is a braid on n strings, and S : Xn → I. Here are
two examples of distinct blocked braids:

R S R S

We show that blocked braids on less than four strings are finite in number,
whereas with four or more strings the number is infinite. (Notice that there are
an infinite number of braids on two strings, whereas there are only two blocked
braids on two strings: τ = τ−1 and 1.)

The method of proof that two tangled circuits are distinct is by associating
invariants to tangled circuits - if we manage to find distict invariants then cer-
tainly the circuits are distinct. The invariants we use are in fact functors which
preserve the braided monoidal and Frobenius structure from the category of
tangled circuits to simpler categories such as the following category of tangled
relations:

Let G be a group. The objects of TRelG are the formal powers of G, and the
arrows from Gm to Gn are relations R from the set Gm to the set Gn satisfying:

1) if (x1, ..., xm)R(y1, ...yn) then also for all g in G
(g−1x1g, ..., g

−1xmg)R(g−1y1g, ..., g
−1ymg),

2) if (x1, ..., xm)R(y1, ...yn) then x1...xm(y1...yn)−1 ∈ Z(G) (the center of G).

Composition and identities are defined to be composition and identity of rela-
tions.

It is straightforward to verify that TRelG is a category. We introduce some
useful notation. Write x = (x1, ..., xm), y = (y1, ..., yn), and so on. Write x =
x1x2...xm and for g, h in G, as gh = hgh−1. For g in G write xg = (xg1, x

g
2, ..., x

g
m).

Thus, (x)g = xg, and of course for any x, y in Gm ×Gn, xgyg = (xy)g where we
write xy for (x1, ..., xm, y1, ..., yn).

Then TRelG is a braided strict monoidal category with tensor defined on
objects by Gm ⊗Gn = Gm+n and on arrows by product of relations. The twist

τm,n : Gm ⊗Gn → Gn ⊗Gm

is the functional relation
(x, y) ∼ (yx, x)

164

The results we mention above are obtained by choosing suitable groups and
tangled relations to distinguish tangled circuits.

Instead, an interesting equation in the Tangled Circuit category is the so-
called Dirac’s belt trick, the unwinding of two full twists of a belt without ro-
tating the ends; it amounts to the equality of the following two blocked braids:

R S

R S

The category of tangled circuits may be relevant to modelling quantum com-
puting with anyons, in a way similar to [13].

2 A graphic tool for executing nets of automata

The second development is a graphic tool for calculating compositionally cospans
of multigraphs and for searching the state space of sequential and parallel net-
works of automata (the components have state). The state space of a sequential
network is a colimit, and of a parallel network is a limit [12]. This has close
connections with our paper [5] and recent work of Sobocinski [15, 16] on Petri
nets.

The tool defines a language for describing expressions in Span(Graph) ([6]).
However instead of evaluating the expression (with associated explosion of state)
it calculates the geometry of the expression by composing in Cospan(Graph),
with a graphic output using GraphViz, and permits (incomplete) exploration of
the state space.

The following is an example of the (static) graphic output with the geometry
of a system:

165

As an example of the language for specifying components notice that the
component bsynch above is defined by

bsync=span(3,1){

00, 01, 10, 11

00 -> 00 : 0,0,0/0

00 -> 01 : 0,0,1/0

00 -> 11 : 0,3,1/0

10 -> 11 : 5,0,1/0

10 -> 10 : 5,0,0/0

01 -> 11 : 5,3,0/0

01 -> 01 : 5,0,0/0

11 -> 00 : 0,0,0/2}

Further the system as a whole is defined (where D=∆, ID=identity, U=unit,
CU=counit, d=delay, crit=critical delay) by

diagonal_delay = crit ; D

expr = (tsync * bsync) ; (diagonal_delay * diagonal_delay) ; (ID * choose * ID) ;

((d;d;d) * ID * ID * (d;d;d;d))

system = (U * ID * ID * U) ; (ID * U * ID * ID * ID * ID * U * ID) ;

(ID * ID * expr * ID * ID) ; (ID * CU * ID * ID * CU * ID) ; (CU * CU)

For more details, and an example of the execution of this (mutual exclusion)
system see the post at http://rfcwalters.blogspot.it/2012/01/petri-nets.html.

References

1. R. Penrose, Applications of negative dimensional tensors, in Combinatorial mathe-
matics and its applications, Academic Press (1971).

166

2. A. Carboni and R.F.C. Walters, Cartesian bicategories I, Journal of Pure and Ap-
plied Algebra, 49 (1987) 11-32.

3. A. Joyal, R.H. Street, The geometry of tensor calculus I, Adv. Math. 88 (1991)
55-112.

4. A. Joyal, R.H. Street, Braided monoidal categories, Adv. Math. 102 (1993) 20-87.
5. P. Katis, N. Sabadini, R.F.C. Walters, Representing P/T nets in Span(Graph), Pro-

ceedings AMAST ’97, SLNCS 1349 (1997) 307-321.
6. P. Katis, N. Sabadini, R.F.C. Walters, Span(Graph): an algebra of transition sys-

tems, Proceedings AMAST ’97, SLNCS 1349 (1997) 322-336.
7. P. Katis, N. Sabadini, R.F.C. Walters, A formalisation of the IWIM Model, in:

Proc. COORDINATION 2000,(Eds.) Porto A., Roman G.-C., LNCS 1906, Springer
Verlag, (2000) 267-283.

8. P. Katis, N. Sabadini, R.F.C. Walters, On the algebra of systems with feedback and
boundary, Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63 (2000),
123-156.

9. P. Katis, N. Sabadini, R.F.C. Walters, Compositional minimization in Span(Graph):
Some examples, Electronic Notes in Theoretical Computer Science 104C,(2004) 181-
197.

10. J. Kock, Frobenius algebras and 2D Topological Quantum Field Theories, Cam-
bridge University Press (2004).

11. R. Rosebrugh, N. Sabadini, R.F.C. Walters, Generic commutative separable al-
gebras and cospans of graphs, Theory and Applications of Categories, 15, (2005)
264-277.

12. R. Rosebrugh, N. Sabadini, R.F.C. Walters, Calculating colimits compositionally,
Montanari Festschrift, LNCS 5065,(2008) 581592

13. L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, An algebra of automata
that includes both classical and quantum entities, Electr. Notes Theor. Comput. Sc.
270 (2011) 263-270.

14. R. Rosebrugh, N. Sabadini, R.F.C. Walters, Tangled Circuits, arXiv:1110.0715
(2011).

15. Jennifer Lantair, Pawel Sobocinski, WiCcA: LTS generation tool for wire calculus,
Proceeding CALCO’11 Proceedings of the 4th international conference on Algebra
and coalgebra in computer science, (2011) 407-412.

16. Roberto Bruni, Hernan Melgratti, Ugo Montanari and Pawel Sobocinski, Connec-
tor algebras for C/E and P/T nets interactions, preprint, (2012).

167

On Pushdown Store Languages? ??

Andreas Malcher1, Katja Meckel1, Carlo Mereghetti2, and Beatrice Palano2

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{malcher,meckel}@informatik.uni-giessen.de
2 Dipartimento di Informatica, Università degli Studi di Milano

via Comelico 39/41, 20135 Milano, Italy
{carlo.mereghetti,beatrice.palano}@unimi.it

Abstract. We design succinct nondeterministic finite automata accept-
ing pushdown store languages — i.e., the languages consisting of the
pushdown contents along accepting computations of pushdown automata.
Then, several restricted variants of pushdown automata are considered,
leading to improved constructions. Finally, we apply our results to de-
cidability questions related to pushdown automata.

Keywords: pushdown automata; pushdown store languages;

1 Introduction

Beside the formal definition of the accepted or generated language, the introduc-
tion of an accepting or generating device always brings the attention to several
“auxiliary” formal structures related to the device itself (see, e.g., [5, 10]). Such
structures are not only interesting per se, but their investigation has often other
relevant motivations.

In this paper, we focus on pushdown store languages for pushdown automata
(PDA). Given a PDA M , its pushdown store language P (M) consists of all
words occurring on the pushdown store along accepting computations of M . It
is known from [1, 4] that, surprisingly enough, P (M) is regular. Here, we design
succinct nondeterministic finite automata (NFA) for P (M). In Section 3, we
outline the construction of NFA, whose size (i.e., number of states) is quadratic
in the number of states and linear in the number of pushdown symbols of M .
Then, we show that this size bound cannot be improved in general by pointing
out its asymptotical optimality. In Section 4, we deal with restricted versions of
PDA, namely: PDA which never pop, stateless PDA, and counter machines. For
any of these restrictions, we present optimal NFA for pushdown store languages,
which are strictly smaller than the NFA given for the general case. Finally, in
Section 5, we apply these results to the analysis of the hardness of some decision

? Partially supported by CRUI/DAAD under the project “Programma Vigoni: De-
scriptional Complexity of Non-Classical Computational Models.”

?? An enlarged version of this work has been accepted at the 14th Int. Workshop on
Descriptional Complexity of Formal Systems (DCFS) 2012, and will appear in the
Springer LNCS series.

168

problems related to PDA. We show that the questions of whether P (M): (i) is a
finite set, or (ii) is a finite set of words having at most length k, for a given k ≥ 1,
or (iii) is unary, can be answered in deterministic polynomial time. Moreover, we
also prove the P-completeness of these questions. As an application, we obtain
that it is P-complete to decide whether a given unambiguous PDA is a constant
height PDA [2, 3], or is a PDA of constant height k, for a given k ≥ 1, or to
decide whether a given PDA is essentially a counter machine. Due to lack of
space, some proof details are moved to the Appendix.

2 Preliminaries

A pushdown automaton (PDA, see e.g., [6]) is formally defined to be a 7-tuple
M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉, where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite pushdown alphabet, δ is the transition function mapping3

Q × (Σ ∪ {λ}) × Γ to finite subsets of Q × Γ ∗, q0 ∈ Q is the initial state,
Z0 ∈ Γ is a particular pushdown symbol, called the bottom-of-pushdown symbol,
initially appearing on the pushdown store, and F ⊆ Q is a set of accepting (or
final) states. Roughly speaking, a nondeterministic finite automaton (NFA) is a
PDA where the pushdown store is never used. A configuration of M is a triple
(q, w, γ), where q is the current state, w the unread part of the input, and γ the
current content of the pushdown store, the leftmost symbol of γ being the top
symbol. For p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ , we write
(q, aw, Zγ) ` (p, w, βγ) if (p, β) ∈ δ(q, a, Z). The reflexive transitive closure of `
is denoted by `∗. The language accepted by M by accepting states is the set
L(M) = {w ∈ Σ∗ | (q0, w, Z0) `∗ (f, λ, γ), for some f ∈ F and γ ∈ Γ ∗}.

The pushdown store language of M (see, e.g., [1, 4]) is the set P (M) of all
words occurring on the pushdown store along accepting computations of M :

P (M) = {u ∈ Γ ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :

(q0, xy, Z0) `∗ (q, y, u) `∗ (f, λ, γ), for some γ ∈ Γ ∗}.

Throughout the rest of the paper, we assume PDA to be in normal form, i.e.,
they can push at most two symbols at each move.

3 Pushdown Store Languages: the General Case

Already in [4], it is proved that P (M) is regular. Here, inspired by [1], we con-
struct an optimal size NFA for P (M) as:

Theorem 1. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, P (M) is ac-
cepted by an NFA with |Q|2(|Γ |+ 1) + |Q|(2|Γ |+ 3) + 2 states. Moreover, there
exist infinitely many PDA MQ,Γ such that every NFA accepting P (MQ,Γ) needs
Ω(|Q|2|Γ |) states.

3 The empty word is here denoted by λ.

169

Proof. (outline, see Appendix) We define the set Acc(Q) (resp., Co-Acc(Q)) repre-
senting all the pushdown contents reachable from the initial configuration (resp.,
from which a final state can be reached). We let [Q] = {[q] | q ∈ Q}, and define:

Acc(Q) = {[q]u ∈ [Q]Γ ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) `∗ (q, y, u)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ ∗ : (q, y, u) `∗ (f, λ, u′)}.

We get4 P (M) = [Q]−1(Acc(Q) ∩ Co-Acc(Q)). A left-linear (resp., right-linear)
grammar for Acc(Q) (resp., Co-Acc(Q)) can be built, and turned into an equiv-
alent NFA with |Q| · (|Γ | + 1) + 1 (resp., |Q| + 2) states. From these two NFA,
an NFA for P (M) with |Q|2(|Γ |+ 1) + |Q|(2|Γ |+ 3) + 2 states is built. ut

4 Pushdown Store Languages for Special Cases

For restricted models of PDA, we are able to provide NFA for their pushdown
store languages whose size is strictly below the general upper bound in Theo-
rem 1. Namely, we focus on: PDA which never pop a symbol from the pushdown,
stateless PDA (i.e., with a single state [6]), and counter machines (i.e., PDA with
pushdown alphabets having a single symbol Z beside Z0 [6]):

Theorem 2. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA of type displayed in the
first column of Table 1. Then, an NFA for P (M) can be built, whose number of
states is bounded as in the second column. These size bounds are optimal.

PDA type Size of NFA for P (M)

never popping |Q| · |Γ |+ 1

stateless |Γ |+ 1

counter machine |Q|+ 2

Table 1. Size of NFA accepting pushdown store languages of restricted PDA.

Proof. (outline, see Appendix) For never popping PDA and stateless PDA, the
grammars for Acc(Q) and Co-Acc(Q) in Theorem 1 can be “optimized”. For
counter machines, by pigeonhole arguments on possible pushdown contents, we
prove that P (M) can be only of the form Z∗Z0 or ZhZ0, with h ≤ |Q|. In all
three cases, PDA witnessing optimality can be exhibited. ut

5 Computational Complexity of Decidability Questions

The complexity of deciding some properties of P (M) for a given PDAM , namely,
finiteness and being subset of Z∗Z0, can be answered by first constructing the
NFA N for P (M) and then deciding finiteness or inclusion in Z∗Z0 for L(N),
respectively. For the first step, we get (see Appendix):

Theorem 3. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA for P (M)
can be constructed in deterministic polynomial time.

4 Given A,B ⊆ Σ∗, we let A−1B = {y ∈ Σ∗ | ∃x ∈ A : xy ∈ B}.

170

This leads to P-completeness of the following decision problems:

Theorem 4. Given a PDA M , it is P-complete to decide whether P (M): (i) is
a finite set, (ii) is a finite set of words having at most length k, for a given k ≥ 1,
(iii) is a subset of Z∗Z0.

Proof. (outline, see Appendix) We consider only point (i). The problem belongs
to P: by Theorem 3, an NFA N for P (M) is built in polynomial time. Then,
the infiniteness of L(N) can be decided in NLOGSPACE ⊆ P [8], which is closed
under complementation [7, 11]. Hence, the finiteness of L(N) can be decided
in NLOGSPACE as well. For completeness, we log-space reduce the emptiness
problem for context-free grammars, which is known to be P-complete [9]. ut

As a consequence, we get the P-completeness of deciding whether a PDA is
of a certain “nature”. More precisely, a PDA M is of constant height if there
is a constant k ≥ 1 such that, for any word in L(M), there exists an accept-
ing computation along which the pushdown store never contains more than k
symbols [2, 3]. M is essentially a counter machine [6] if in all of its accepting
computations the pushdown storage is used as a counter. By Theorem 4, we get

Corollary 5. For an unambiguous PDA M , it is P-complete to decide whether
M : (i) is of constant height, (ii) is of constant height k, for a given k ≥ 1. If M
is a PDA, it is P-complete to decide whether it is essentially a counter machine.

References

1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Handbook of Formal Languages, Vol. 1. pp. 111–174. Springer (1997)

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean
operations on constant height deterministic pushdown automata. In: DCFS 2011.
LNCS 6808, pp. 80–92. Springer (2011)

3. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208, 385–394 (2010)

4. Greibach, S.A.: A note on pushdown store automata and regular systems. Proc.
Amer. Math. Soc. 18, 263–268 (1967)

5. Hartmanis, J.: Context-free languages and Turing machines computations. Proc.
Symposium on Applied Mathematics 19, 42–51 (1967)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Massachusetts (1979)

7. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–38 (1988)

8. Jones, N.D.: Space-bounded reducibility among combinatorial questions. J. Com-
put. System. Sci. 11, 68–85 (1975)

9. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time.
Theoretical Computer Science 3, 105–118 (1976).

10. Mereghetti, C., Palano, B.: Quantum finite automata with control language. The-
oretical Informatics and Applications 40, 315–332 (2006)

11. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-
tomata. Acta Inform. 26, 279–84 (1988)

171

Undecidability of Quantized State Feedback
Control for Discrete Time Linear Hybrid Systems

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Computer Science Department, Sapienza University of Rome, Italy

Abstract. We show that existence of a quantized controller for a given
Discrete Time Linear Hybrid System (DTLHS) is undecidable. This is a
relevant class of controllers since control software always implements a
quantized controller.

Introduction Many embedded systems are software based control systems. A
software based control system consists of two main subsystems: the controller
and the plant. Typically, the plant is a physical system consisting, for example, of
mechanical or electrical devices while the controller consists of control software
running on a microcontroller. In an endless loop, each T seconds (sampling time),
the controller, after an Analog-to-Digital (AD) conversion (quantization), reads
sensor outputs from the plant and, possibly after a Digital-to-Analog (DA) con-
version, sends commands to plant actuators. The controller selects commands in
order to guarantee that the closed loop system (that is, the system consisting of
both plant and controller) meets given safety and liveness properties, i.e. system
level specifications. Formal verification of system level specifications for software
based control systems requires modelling both continuous systems (typically, the
plant) as well as discrete systems (the controller). This is typically done using
Hybrid Systems (e.g., see [2, 1]). In [7], we presented a constructive necessary
condition and a constructive sufficient condition for the existence of a (quan-
tized sampling) controller for a software based control system when the plant
is modelled using a Discrete Time Linear Hybrid System (DTLHS), that is a
discrete time hybrid system whose dynamics is defined as a linear predicate (i.e.,
a boolean combination of linear constraints) on its continuous as well as discrete
variables. System level safety as well as liveness specifications may be modelled
as set of states defined in turn as linear predicates. From [5], we know that exis-
tence of a sampling controller, even for relatively simple linear hybrid automata,
is undecidable. Considering that, given a quantization schema (i.e. number of
bits used in AD conversion), the number of quantized sampling controllers is
finite and that when using DTLHSs also the plant is modelled using a discrete
model of time, one may be led to think that existence of a quantized sampling
controller might be decidable. In this paper we show that also for DTLHSs,
existence of a quantized sampling controller meeting given specifications is un-
decidable. We prove such a result by showing that any two-counter machine can
be coded as a DTLHS thereby extending to DTLHSs the proof technique in
[5]. Undecidability results of the control synthesis problem for dense as well as
discrete time linear hybrid systems have been presented in [6, 5, 9, 3]. A more
general problem is considered in [4], namely the discrete time control with un-
known sampling rate, that is undecidable even for TA. Moreover, we note that
none of the above papers addresses the issue of quantized control.

172

Labeled Transition Systems An LTS S is a tuple (S,A, T) where S is a set
of states, A is a set of actions, and T : S ×A× S→B is the transition relation
of S. S is deterministic if ∀s ∈ S, a, a′, a′′ ∈ A, T (s, a, s′) and T (s, a, s′′) imply
s′ = s′′. A run or path for an LTS S is a sequence π= s0, a0, s1, a1, . . . of states
st and actions at such that ∀t ≥ 0 T (st, at, st+1). The length |π| of a finite run
π is the number of actions in π. π(S)(t) denotes the t-th state element of π, and
π(A)(t) the t-th action element of π.
Definition 1. A reachability problem is a triple (S, I, G), where S is an LTS
(S,A, T), and I,G ⊆ S. G is reachable from I if there exists a run π of S such
that π(S)(0) ∈ I and π(S)(t) ∈ G for some t ∈ N.

LTS Control Problem A controller for an LTS S is used to restrict the
dynamics of S so that all states in the initial region will reach in one or more
steps the goal region. In what follows, let S = (S,A, T) be an LTS, I, G ⊆ S be,
respectively, the initial and goal regions of S.
Definition 2. A controller for S is a function K :S×A→B s. t. ∀s ∈ S, ∀a ∈ A.
K(s, a)→∃s′ T (s, a, s′). The domain of K is the set of states for which a control
action is enabled, i.e. dom(K) = {s ∈ S | ∃aK(s, a)}. The closed loop system
S(K) is the LTS (S,A, T (K)), where T (K) (s, a, s′) = T (s, a, s′) ∧K(s, a).
A path π is a fullpath if either it is infinite or its last state has no successors.
We denote with Path(s, a) the set of fullpaths starting in state s with action
a. Given a path π in S, we define j(S, π,G) as follows. If there exists n > 0
such that π(S)(n)∈G, then j(S, π,G)=min{n |n>0 ∧ π(S)(n)∈G}. Otherwise,
j(S, π,G) = +∞. We require n > 0 since our systems are nonterminating and
each controllable state (including a goal state) must have a path of positive
length to a goal state. Taking sup∅ = +∞ and inf ∅ = +∞, the worst case
distance (pessimistic view) of a state s from the goal region G is Js(S, G, s) =
sup{js(S, G, s, a) | a ∈ Adm(S, s)}, being js(S, G, s, a) = sup{j(S, G, π) | π ∈
Path(s, a)}. The best case distance (optimistic view) of a state s from the goal
region G is Jw(S, G, s) = sup{jw(S, G, s, a) | a ∈ A}, being jw(S, G, s, a) =
inf{j(S, G, π) |π∈Path(s, a)}.
Definition 3. A control problem for S is a triple P= (S, I, G). A strong (resp.
weak) solution to P is a controller K for S, such that I ⊆ dom(K) and for all
s ∈ dom(K), Js(S(K), G, s) (resp. Jw(S(K), G, s)) is finite.
Proposition 1. Each strong solution of a control problem (S, I, G) is also a
weak solution. If S is deterministic, any weak solution is also a strong solution.

Discrete Time Linear Hybrid Systems A Discrete Time Linear Hybrid
System (DTLHS) H is a tuple (X, U, Y, N) where: X = Xr ∪ Xd is a finite
sequence of real (Xr) and discrete (Xd) present state variables. We denote with
X ′ the sequence of next state variables obtained by decorating with ′ all variables
in X. U = Ur ∪ Ud is a finite sequence of input variables. Y = Y r ∪ Y d is a
finite sequence of auxiliary variables. Auxiliary variables are typically used to
model modes or uncontrollable inputs. N(X,U, Y,X ′) is a linear predicate over
X ∪ U ∪ Y ∪X ′ defining the transition relation (next state) of the system. The
dynamics of a DTLHS H is defined by the labeled transition system LTS(H) =

173

(DX , DU , N̄) where: N̄ : DX × DU × DX → B is a function s.t. N̄(x, u, x′) =
∃ y ∈ DY N(x, u, y, x′). A state x for H is a state x for LTS(H) and a path for
H is a path for LTS(H).

Definition 4. Let H = (X,U, Y,N) be a DTLHS and let I and G be linear
predicates over X. The DTLHS reachability problem R = (H, I, G) is defined
as the LTS reachability problem (LTS(H), I, G). Similarly, the DTLHS control
problem (H, I, G) is defined as the LTS control problem (LTS(H), I, G).

Quantized Control Problem Quantization is the process of approximating a
continuous interval by a set of integer values. A quantization function γ : R 7→ Z
is a non-decreasing function, such that for any bounded interval I = [a, b] ⊂
R, γ(I) is a bounded integer interval. Given a DTLHS H = (X,U, Y,N) a
quantization Q for H is a pair (A, Γ), where (let W = X ∪ U ∪ Y): A is a
predicate over W that explicitely bounds each variable in W . For each w∈W ,
we denote with Aw its admissible region and with AW =

∏
w∈W Aw and Γ is a set

of maps {γw | w∈W and γw is a quantization function}. Let W =[w1, . . . , wk]
and v=[v1, . . . , vk]∈AW . We write Γ (v) for the tuple [γw1

(v1), . . . , γwk
(vk)].

A control problem admits a quantized solution if control decisions can be
made by just looking at quantized values. This enables a software implementation
for a controller.

Definition 5. Let H = (X,U, Y,N) be a DTLHS, Q = (A, Γ) be a quantization
for H and P = (H, I, G) be a DTLHS control problem. A Q Quantized Feedback
Control (QFC) strong (resp. weak) solution to P is a strong (resp. weak) solution
K(x, u) to P such that K(x, u)=K̂(Γ (x), Γ (u)) where K̂ : Γ (AX)×Γ (AU)→B.

Undecidability of Quantized Feedback Control Problem We prove the
undecidability of the DTLHS quantized feedback control problem along the same
lines of similar undecidability proofs [6, 5]. We first show that a two-counter ma-
chine M can be encoded as a deterministic DTLHS HM without controllable
actions in such a way that M halts if and only if HM reaches a goal region. This
immediately implies that DTLHS reachability is undecidable. Since HM has no
controllable inputs, existence of a weak controller is equivalent to a reachability
problem. For the same reason, actions enabled by any controller for HM do not
depend on state variables. As a consequence, a quantized weak control problem
is equivalent to a DTLHS control problem. Finally, by Proposition 1, weak solu-
tions to deterministic LTS control problems are also strong solutions. Therefore,
since HM is deterministic, the quantized strong control problem for DTLHS is
undecidable, too.

Two-Counter Machines. A two-counter machine [8] M consists of two coun-
ters that store unbounded natural numbers and a finite control that is a finite
sequence of statements 〈1 : stmt1, . . . , n : stmtn〉, where stmt ::= inc i k | dec i k
| beq i k | halt, with i ∈ {0, 1}. As an example, if the counter i is 0, the execution
of j : beq i k causes a jump to the statement labeled k, otherwise the execution
proceed with statement j + 1. The halting problem for two-counter machine is
undecidable [8].

174

Lemma 1. For any two-counter machine M , there exists a bounded and deter-
ministic DTLHS HM , and two predicates I and G such that M halts if and only
if G is reachable from I in HM .
Proof. (Sketch) Let M be a two-counter machine and let HM be the DTLHS
(X, U , Y , N), where Xr = {x0, x1}, Xd = {l, g}, and U = Y = ∅. We use
two real variables x0 and x1 to encode values stored in counters. Each natural
numberm is encoded by the rational number 1/2m. A discrete variable l stores the
label of the statement currently under execution. Finally, the boolean variable g
encodes termination of the computation ofM . The transition relation N encodes
the execution of the control program. A program 〈1 : stmt1, . . . , n : stmtn〉 is
encoded by the predicate N =

∧n
j=1Jj : stmtjK. As an example, here we present

the encoding of the beq statement: Jj : beq i kK ≡ (l 6= j) ∨ (((xi 6= 1) ∨ (l′ =
k)) ∧ ((xi = 1) ∨ (l′ = l + 1)) ∧ (x1−i = x′1−i) ∧ (g = g′)).

An immediate consequence of Lemma 1 is the undecidability of the DTLHS
reachability problem.
Theorem 1. The reachability problem for bounded DTLHSs is undecidable. Ex-
istence of strong and weak solutions to a control problem for a bounded DTLHS
is undecidable. Existence of QFC strong and weak solutions to a DTLHS control
problem is undecidable.
Conclusions We have shown that, for DTLHSs, existence of a quantized sam-
pling controller meeting given (safety and liveness) system level specifications
is undecidable. The relevance of such a problem stems from the fact that the
control software implementing the controller in a software based control system
always yields a quantized sampling controller. Investigating interesting classes of
(discrete time) hybrid systems for which quantized sampling control is decidable
appears to be an interesting future work.

References
1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3 – 34 (1995)

2. Alur, R.: Timed automata. In: CAV. pp. 8–22. LNCS 1633 (1999)
3. Asarin, E., Bouajjani, A.: Perturbed turing machines and hybrid systems. In: LICS.

pp. 269–278 (2001)
4. Cassez, F., Henzinger, T.A., Raskin, J.F.: A comparison of control problems for

timed and hybrid systems. In: HSCC. pp. 134–148 (2002)
5. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-

tomata. In: ICALP. pp. 582–593 (1997)
6. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? J. of Computer and System Sciences 57(1), 94–124 (1998)
7. Mari, F., Melatti, I., Salvo, I., Tronci, E.: Synthesis of quantized feedback control

software for discrete time linear hybrid systems. In: CAV. pp. 180–195. LNCS 6174
(2010)

8. Minsky, M.L.: Recursive unsolvability of post’s problem of "tag" and other topics
in theory of turing machines. The Annals of Mathematics 74(3), pp. 437–455 (1961)

9. Vidal, R., Schaffert, S., Shakernia, O., Lygeros, J., Sastry, S.: Decidable and semi-
decidable controller synthesis for classes of discrete time hybrid systems. In: CDC.
pp. 1243–1248. IEEE Computer Society (2001)

175

Exploiting Fine Grained Parallelism on the SPE?

Emanuele Milani and Nicola Zago

Department of Information Engineering,
University of Padova, Padova, ITALY
{milaniem,zagonico}@dei.unipd.it

Abstract. In this paper we propose a simulation of Work-Time frame-
work algorithms on the recently proposed Speculative Prefetcher and
Evaluator (SPE) processor, using a pipelined hierarchical memory. This
allows us to inherit the efficency of work-optimal parallel algorithms in
this new model.

Keywords: computational models, hierarchical pipelined memory, work-
time simulation, efficient merge

1 Introduction

The Random Access Machine (RAM) is an idealized sequential computational
model, in which the time to access any memory location is independent from
memory size [8]. This assumption is unsuitable for physical machines, because
of the principles of maximum information density and maximum information
speed [4]. Indeed their combination imposes a minimum access latency, which
grows with the size of the memory. RAM complexity is therefore an automatic
lower bound for a given problem on any real sequential machine.

One of the main aims of recent literature is to devise implementable machine
designs which hide or limit the latency impact, matching the ideal lower bounds.
To this purpose, two major algorithmic strategies have been investigated: locality
and concurrency of memory accesses. At the same time, models suitable to ex-
hibit and measure them have been devised, respectively by means of hierarchical
memories and pipelined memories.

Among the first we recall the Hierarchical Memory Model (HMM) [1], which
is characterized by a non-decreasing function a(x) that describes the access time
to location x, implying that locations near to the processor take a lower time
to be accessed. The Block Transfer (BT) [2] model extends the HMM, allowing
the transfer of B adjacent locations starting from address x in a(x) + B steps.
These models encourage the design of algorithms exhibiting temporal locality,
that is to use more often memory locations with a lower address, since they
have a lower access time. The BT considers also spatial locality, or the access

? This work was supported, in part, by MIUR-PRIN Project AlgoDEEP, by
PAT-INFN Project AuroraScience, and by the University of Padova Projects
STPD08JA32 and CPDA099949.

176

of adjacent data in a short time window. These models are good simplification
of actual computer memories, which are hierarchically divided in several levels
– from fast yet small caches to slow yet huge mass storage – among which
data is transferred in blocks. A special case of BT is the Disk Model (DM)
[15], which has been used to model the disk bottleneck and study the disk I/O
efficiency of algorithms. Although general simulations of RAM algorithms in
these models yield a worst case slowdown proportional to the memory latency,
algorithms exhibiting locality can reach the same performance, as in matrix
multiplication [1]. Nevertheless, algorithms which need to read the whole input
present superlinear lower bounds; for example the touch problem – which consists
in accessing each of the n elements in input and triavially solvable in n step in
RAM model – has Θ(n) = n log∗ n complexity in the BT model with access
function a(x) = log x [2].

On the other hand, Pipelined Memories (PM) [14] allow latency hiding
through overlap of accesses. In particular they can perform k independent re-
quests to the memory of M locations waiting only O(a(M)+k) step for receiving
all the responses. One should note that, unlike BT, accesses need not involve ad-
jacent locations, nevertheless we have to know in advance enough independent
requests to amortize the latency cost. PMs can solve the touch problem in linear
time, still they have superlinear performance in problems where there are strong
dependencies among instructions.

Recently [3] introduced a pipelined and hierarchical memory design which
complies with physical constraints. This, jointly with the SPE processor, forms
the Pipelined Hierarchical Memory Machine (PHMM), which is able to match
RAM complexity (O(1) slowdown) on wide classes of programs, exploiting both
concurrency and locality.

Before memory models, these strategies were already been extensively studied
in parallel computing, since concurrency allows independent executions among
the processors and locality limits communication among these. This fact is
pointed out by several works which show how to effectively simulate parallel
models in memory models, partially carrying the knowledge of parallel comput-
ing in this field. For example, in [6] and [14], general Parallel Random Access
Machine (PRAM, the ideal parallel model) simulations are proposed respectively
on DM and PM, deriving new upper bounds for some problems on these memory
models exploiting previously known parallel results. In [9] is shown how to turn
the submachine locality of the Decomposable Bulk Synchronous Parallel model
(D-BSP, a parallel model where also communication and synchronization costs
are considered) in locality of references for the HMM.

Our paper is related to these works; in fact we propose a simulation of Work-
Time (WT) framework [12] – a parallel framework which highlights parallelism
and critical path of parallel algorithms – on the PHMM. This simulation, when
applied to work-optimal WT algorithms, provides optimal algorithms for the
PHMM. In particular we use it to obtain an optimal merge implementation,
improving the previously best known result, which has superlinear complexity.

177

We also show how the whole exploitation of available parallelism can lead to a
simulation with a huge memory footprint and degrading its performance.

The paper is organized as follows: in Sections 2 and 3 we recall concepts about
SPE and parallelism. Section 4 contains our simulation, whose applications are
shown in Sect. 5. Conclusions and further research directions are in Sect. 6.

2 The Speculative Prefetcher and Evaluator

The Speculative Prefetcher and Evaluator is a processor design which is able
to exploit a Pipelined Hierarchical Memory (PHM) while complying with the
physical constraints discussed in [4]. Both have been introduced in [3].

The memory features a size M and latency access function a(x). It can accept
a request per cycle for an arbitrary location x, guaranteeing a response within
a(x) cycles. One should note that the latency of k requests is determined by the
location with higher address accessed, unlike PMs where latency is always a(M).

SPE has an Instruction Generator Unit (IGU), connected to an instruction
PHM, and an Instruction Execution Unit (IEU), connected to a data PHM of
M locations. Both IGU and IEU have O(k) constant–sized units called stations
and arranged as linear arrays. Parameter k denotes the processor size and is
choosen to match the worst case latency a(M).

IGU

stations︷ ︸︸ ︷

0 1 . . . k − 1

-segment

�
segment
completed

IEU

stations︷ ︸︸ ︷

0 1 . . . k − 1

INSTRUCTION PHM

�� @@

@@ ��

DATA PHM

�� @@

@@ ��

Fig. 1. Scheme of the PHMM architecture: IGU reads instructions from the instruction
PHM, produces a segment and passes it to IEU stations. Here data are speculatively
prefetched and instructions are executed, solving possible invalid data with the internal
forwarding or reading them from data PHM.

178

The computation consists in a sequence of stages. In each stage the IGU reads
instructions from the instructions PHM, assembling a segment (the number of
stations used in the IEU) of machine code instructions for the IEU. In particular
IGU predicts possible branches of the code and then loads the obtained sequen-
tial segment in the IEU, one instruction per station. The execution consists in a
series of rounds in which instructions are executed. Each round is divided in two
parts: in the first the IEU speculatively prefetches the operands of all the in-
structions of the segment, both directly and indirectly addressed; in the second,
all the stations execute sequentially with the speculative operands they hold. In
case of mispredicted operands, due for example to indirectly addressed operands
whose base address has been changed by previous stations, another round takes
place.

Anyway, some memory accesses are avoided through a mechanism of internal
forwarding among stations. This mechanism allows the stations to forward their
computed result along the linear array connecting them. In this way, if the value
of an operand is modified by a station, making invalid the prefetched values
of the followings stations, the new value will be immediately available to them
without new memory accesses, but simply receiving it from the linear array.

One should note that the load of a(M) instructions per round gives us an
amortized O(1) set up time per station. Moreover the segment size can be di-
namically decreased to take advantage from the hierarchical structure of the
memory. When the speculative prefetch or the internal forwarding succeed in
avoiding further memory accesses, also each instruction execution takes O(1)
step.

In order to understand the segment assembly problems, we recall the defini-
tion of dependency-related concepts.

Definition 1. There is Functional Dependency (FD) between instructions Ij
and Ik if Ij modifies m[x], and Ik uses the content of m[x] as operand or to in-
directly address the output location, while no operation among Ij and Ik modifies
m[x].

Definition 2. There is Address Dependency (AD) between instructions Ij and
Ik if Ij modifies m[x], and Ik uses the content of m[x] to indirectly access to an
operand, while no operation among Ij and Ik modifies m[x].

Clearly, memory accesses due to FD can be avoided in SPE thanks to internal
forwarding. Instead AD is harder to be addressed and requires a new fetch of
operands.

Definition 3. Given the instruction stream (I1, I2, . . . , IN) produced by the ex-
ecution of a SPE program P on a particular input, its address dependence depth
D is the maximum length of a subsequence Ij1 , Ij2 , . . . , IjL with j1 < j2 < · · · <
jL where subsequent instructions have address dependency.

Let us recall two important program categories.

Definition 4. A program P is straigth–line if it consists of only data processing
instructions.

179

Definition 5. A program P is direct–flow if it is straigth–line and does not
use indirect addressing.

In [3] it is shown that any N instructions straigth–line program with address
dependence depth D and accessing memory locations with address smaller than
M can be executed by an SPE with PHM in time T = O((D + 1)(N + a(M))).
Moreover, a direct–flow program can be executed in T = O(N + a(M)).

In particular the following result from [3] holds:

Proposition 1. A program consisting in nested for loops where the only branches
are those related to the cycles, can be executed in T = O(D(N + a(M))).

Proposition 1 applies to wide classes of programs, such as FFT and Matrix
Multiplication.

We quote the following example, which intuitively shows how this occurs.

Example 1. Let’s consider the execution of a C-like code that increments every
element of an array: for i=1 to k; A[i] = A[i]+1. Using the naive branch
prediction policy that always reenters the loop, the IGU can unroll the loop in
i=1; m[i]=m[i]+1; i=i+1; m[i]=m[i]+1; At this point, the SPE spec-
ulatively calculates all the i values in the first round, prefetching the right
operands at the beginning of the second one, whose speculative execution cor-
rectly completes the segment execution. So it can resolve address dependencies
in O(1) amortized time.

3 Parallel Computing Background

Definition 6. A Parallel Random Access Machine (PRAM) [10, 11] is an ab-
stract parallel machine model, that consists in a collection of P synchronous
processors and M shared memory locations.

Definition 7. A PRAM program is a sequence of parallel steps, each of which
specifies an instruction per processor.

Beside the number of nodes, the computational power of a PRAM is deter-
mined by which shared memory operations are permitted. Within a step, in fact,
each memory location may or may not be accessed by more than one processor.
In other words, a PRAM can be provided with either an exclusive read (resp.
exclusive write) memory, or a concurrent read (resp. concurrent write) memory.
Moreover, when concurrent writes are allowed, a contention policy must be spec-
ified in order to determine the actual memory state after the access. The most
studied configurations, in order of increasing power, are exclusive read exclu-
sive write (EREW), concurrent read exclusive write (CREW), concurrent read
concurrent write (CRCW).

Both SIMD and MIMD versions have been studied, anyway they are equiv-
alent [7] if they feature the same memory access policy.

180

Definition 8. The Work-Time model (WT) [12] is a parallel programming
model in which an algorithm AWT consists in an ordered sequence of T sets
s0, . . . , sT−1 of independent operations on MWT memory locations. Different sets
may differ in size and therefore exhibit more or less parallelism. Let |si| = pi,

then we define the work W of AWT as W =
∑T−1
i=0 pi.

It should be noted that, since it is always possible to simulate AWT on a
RAM in time TRAM = W , lower bounds on RAM complexity automatically
hold also for the work. In particular, let T ∗

RAM be the best RAM complexity for
a given problem. Then, the equivalent WT algorithm AWT is work–optimal if
and only if W is O(T ∗

RAM).
WT algorithms are meant to be executed by PRAMs, by means of a schedule.

A sufficient condition for a valid schedule of AWT in a PRAM is that each
operation in si is executed after all operations in si−1 and before any operation
in si+1. This schedule allows us to apply Brent’s Theorem [5] and to execute
AWT in a PRAM with P processors in a time O(WP + T).

On the other hand, it is not clear how we can reschedule a PRAM program
for P processors as the processor number increases, since possible dependencies
between steps are not stated explicitly. For this reason WT framework is much
more convenient if we need to extract dependencies and available parallelism.

The major construct of the WT model is the pardo, which specifies a parallel
step with a syntax similar to a traditional for. The main difference is that the
cycle index denotes just the index of an element of the set of instructions and
can not be modified by the instructions. For example

for j, 1 ≤ j ≤ p pardo

operationj

denotes a set of p independent operations, whose execution order is irrelevant.
Since WT framework is a very high level model, it is important to pay at-

tention to some hidden low level details. In particular, one should note that in
each parallel step:

F1 guarantees that all the reads take place before any write;
F2 allows addresses to be expressed in a high level fashion.

Therefore any simulation or implementation of an algorithm which relies on
such features has to provide them. For the sake of clarity we avoid to explicitly
address these issues by resorting to a slightly more constrained yet equivalent
case. We then show how to map the general case to this.

Let us introduce a class of WT algorithms.

Definition 9. A step of WT algorithm AWT is CRCW decoupled if any concur-
rently accessed memory location is either read or written. AWT is itself CRCW
decoupled if this condition holds for each step.

Any CRCW decoupled algorithm does not rely on (F1). In the opposite case,
it is possible to devise an equivalent CRCW decoupled algorithm with the same

181

work and time complexity. In fact, it suffices to split each parallel step into two
sub–steps. The first fills an auxiliary array with the operation inputs, while the
second performs the actual execution, reading from the array. In the worst case,
the memory overhead is O(p).

Consider now, without loss of generality a SIMD parallel step in the WT
framework, which executes on an initial memory state Mi and leads to final
state Mi+1. Available parallelism and the memory locations that must be read
or written (both usually parametrized with the size of the input) are indicated by
a pardo statement. In particular an index j is used to distinguish each concurrent
operation. Note that the memory to store one step is constant and therefore the
whole program takes O(T) memory.

One can think the operands of operation j to be a function of j. Typically,
such function is simple enough to be expressed by the addressing modes of a mod-
ern instruction set (for example a base address and an index–dependent offset).
In the most general case, when (F2) is fully exploited, the function can be ex-
plicitly used to prepare an auxiliary operand vector. This preliminary phase can
be implemented with a memory overhead depending on how much parallelism
we want exploit (up to pi). In particular for the SPE, O(k) memory locations
are sufficient.

4 Simulation of WT Algorithms

One way to write efficient programs for SPE is to exploit the parallelism of
Work–Time algorithms. Parallel steps can be efficiently coded into programs,
also in case of concurrent memory accesses, which can be implemented with
little effort. In fact, the address dependence depth of the resulting segments is
O(1), and memory accesses can be fully pipelined.

However, it must be noted that a trivial static unrolling of a pardo statement
could lead to an SPE program with O(W) size. In this case, instruction fetch
latencies could be larger that data latencies, thus hindering time efficiency.

A more complicated unrolling, proportional to processor size, can be devised,
which leads to programs with O(kT) size. This last strategy is not the most
compact; still it is interesting because it also applies to the SP processor (see
[3]). On the contrary SP does not efficiently support the strategy described next.

Without loss of generality (see Section 3), let us restrict our scope to CRCW
decoupled WT algorithms. The resulting simulation is itself rather simple. If
only exclusive writes are used, WT statement

for j, 1 ≤ j ≤ p pardo

operationj

can be coded for SPE with a loop in the form:

segmentsize(min(k, p))
for j, 1 ≤ j ≤ p do

instructionsj

182

where instructionsj is the SPE coding for the high level WT operation.
As for concurrent writes, contention policies are quite different one from

another, and therefore different approaches are needed for their implementation.
For example, in case of reduction–like policies, such as Max, + or logical AND,
it is sufficient to append the appropriate reduction instruction to the core of the
loop. The resulting SPE code would look like:

segmentsize(min(k, p))
for j, 1 ≤ j ≤ p do

instructionsj
acc← max{acc; outputj}

where outputj is the result of instructionsj , the reduce operation is a Max
and the final result is accumulated in variable acc.

Another common policy, priority CW PRAM, can be implemented recurring
to predicated instructions, whose output is committed to memory only if a certain
condition is verified.

It must be noted that the correctness of the simulation relies on the following
fatcs:

– SPE instructions are chosen to match the corresponding WT operations;
– each SPE instruction gets the right operands;
– memory writes are consistent with the policy specified by AWT .

Hence, Proposition 2 holds true.

Proposition 2. Given WT parallel step si, it is possible to implement an equiv-
alent SPE program P, such that they both lead from memory state Mi−1 to Mi.

Before examining the time complexity of the simulation, we must consider
its memory footprint.

Proposition 3. Let M
(i)
WT (resp. M

(i+1)
WT) be the size of memory state Mi (resp.

Mi+1), and let MPH be the amount of memory needed by P. Then, both MPH

and M
(i+1)
WT are O(M

(i)
WT + p).

Proof. Since p is the number of operations of the parallel step,M
(i+1)
WT isO(M

(i)
WT+

p).
As for MPH , an auxiliary operand vector only needs O(min{p, k}) = O(p)

extra space. ut

Proposition 4. WT CRCW parallel step with p available parallelism can be
translated into a SPE program P with O(p+ a(MPH)) time complexity.

Proof. Consider the for loop which implements the simulation. Its body has O(1)
address dependence depth. Therefore, as in Example 1, the IGU is able to roll out
dp/ke segments with O(k + a(MPH)) time complexity each. More precisely, at
least dp/ke − 1 segments have O(k) complexity, since k ≥ a(Mtotal) ≥ a(MPH).
Summing up, we get O(p+ a(MPH)).

183

As for reduction–like CWs, the simulation adds a functional dependency for
each concurrent WT operation. Anyway, the internal forwarding mechanism of
SPE can deal with them at a constant multiplicative slowdown. The same holds
for CW implementations based on predicated instructions. ut

Next we show how Proposition 4 can be repeatedly applied in order to get a
whole SPE implementation of AWT . Correctness follows from the fact that each
single application produces the same memory state as the correspondent parallel
step.

Theorem 1. Consider WT algorithm AWT , with W work and T time com-
plexity. Then an equivalent SPE program PA can be written, with complexity

O(W + Ta(MPH)), where MPH is maxi{M (i)
PH}.

Proof. PA can be obtained with T applications of Proposition 4. The resulting

complexity is therefore
∑
iO(pi + a(M

(i)
PH)), which is O(W + Ta(MPH)). ut

One should note that this simulation results in a program of O(T) instruc-
tions. Therefore instruction memory latencies can be ignored.

Corollary 1. Let AWT be a work–optimal WT algorithm. If Ta(MPH) is O(W),
then there exists a SPE simulation of AWT with optimal RAM complexity.

As for MPH , an immediate consequence of Prop. 3 follows.

Proposition 5. MPH = maxi{M (i)
PH} is bounded from below by the maximum

available parallelism of AWT plus input size; from above by the work and the
input size. Formally: n+ maxi{pi} ≤MPH ≤ n+W .

In general, any work–optimal parallel algorithm with polylogarithmic time
complexity is a good candidate for efficient implementations on the SPE, if
a(x) < x.

Anyway, another metric emerges from Prop. 5. In fact, exploiting all the
available parallelism can affect memory usage, therefore increasing worst case
latencies. Actually, once the condition Ta(MPH) = O(W) is met, any further
parallelism would just increase memory footprint.

Section 5 contains a clear example of how this metric can be used.

5 Applications

Corollary 1 can be successfully applied to work–optimal WT algorithms which
exhibit polylogarithmic time T , whenever the memory access function of the
PHM is xα, 0 < α < 1 or log x. Finding connected components of a dense,
undirected graph, for example, can be done with T = log2 n and W = n2 (see
[12]) where input size is O(n2), n being the number of nodes. Therefore, we can
implement a program for SPE with O(n2 + log2 n · a(n2)) = O(n2) complexity,
which is optimal.

184

An analogous result holds for the problem of merging two sorted lists of n
elements. In this case we can resort to the work–optimal algorithm in [13], which
results in a linear SPE program.

Some further analysis is needed, though, when these solutions are used as
subroutines of larger programs. In particular, the underlying assumption that
all the input is stored in the fastest memory locations may not hold. Consider
for example an iterative bottom–up implementation of mergesort for an SPE
with a(x) = xα. At iteration j, we have to merge pairs of 2j-sized lists, with
the ith pair starting at position 2j+1i. Each such merge has a O(2j + a(2j+1i))
complexity, which results to be superlinear if O(2j) < O(a(2j+1i)). For example
the overall complexity of step j = 0 is O(n1+α).

In this case, a technique similar to the execution of consecutive searches of
[14] can be employed. Basically, instead of merging one pair of sublists at a
time, whenever the size of the subinstances is small enough, all the merges ad-
vance “concurrently”. Therefore, it is possible to obtain segments of independent
instructions, which are executed efficiently.

An interesting example is matrix multiplication of two n×n square matrices
(input size is O(n2)). Implementing the standard WT algorithm with n3 paral-
lelism yields an optimal SPE implementation P, as far as time complexity is
concerned. The result is achieved even if no locality is exploited. Anyway, P
requires Ω(n3) space to be executed. In other words, a SPE with M available
memory size, could not multiply matrices bigger than M1/3 × M1/3. On the
other hand, implementing a WT algorithm with n2 available parallelism yields
a both time and space optimal SPE program.

6 Conclusions and Future Work

This paper shows a general technique for exploiting the parallelism expressed
by the WT framework in the SPE. In particular, it shows how concurrent op-
erations can be sequentially executed in a pipelined–efficient way, and how such
efficiency can be measured. Besides, it is also shown how too much parallelism
can negatively affect memory usage, also when time complexity is not compro-
mised.

The more straightforward research line involves assessing a larger group of
problems and algorithms, possibly mapping whole computational categories to
classes of SPE programs.

A second line is directed to the integration of this work with memory hier-
archy exploitation.

Finally, as a link between coarse grained parallelism and memory hierarchy
exploitation has already been proved [9], it would be interesting to see if and
how such link exists also for pipelined memory exploitation.

185

References

[1] Aggarwal, A., Alpern, B., Chandra, A. K., and Snir, M.: A model for hierarchical
memory. In Proceedings of the 19th ACM Symposium on Theory of Computing.
ACM, New York, 305–314, 1987.

[2] Aggarwal, A., Chandra, A. K., and Snir, M.: Hierarchical memory with block
transfer. In Proceedings of the 28th Annual Symposium on Foundations of Com-
puter Science. IEEE Computer Society Press, Los Alamitos, 204–216, 1987.

[3] Bilardi, G., Ekanadham, K., and Pattnaik, P.: On approximating the ideal random
access machine by physical machines. Journal of the ACM 56, 5, 1–57, August
2009.

[4] Bilardi, G., and Preparata, F.: Horizons of parallel computation. J. Parall. Distrib.
Comput. 27, 2, 172–182, 1995.

[5] Brent, R. P.: The Parallel Evaluation of General Arithmetic Expressions. Journal
of the ACM 21, 2, 201–206, April 1974.

[6] Chiang, Y., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E., and Vit-
ter, J. S.: External Memory Graph Algorithms. In Proceeding SODA ’95 Proceed-
ings of the sixth annual ACM-SIAM Symposium on Discrete Algorithms, 139–149,
1995.

[7] Collins, R. J.: MIMD Emulation on the Connection Machine. Technical Report
CSD-910004, Dept. of Computer Science, Univ. of California, Los Angeles, Feb.
1988.

[8] Cook, S. A., Reckhow, R. A.: Time-bounded random access machines. J. Comput.
Syst. Sci. 7, 4, 354–375, 1973.

[9] Fantozzi, C., Pietracaprina, A. A., Pucci, G.: Translating Submachine Locality
into Locality of Reference. Journal of Parallel and Distributed Computing 66, 5,
633–646, 2006.

[10] Fortune, S., and Wyllie, J.: Parallelism in Random Access Machines. In Proceed-
ing STOC ’78 Proceedings of the tenth annual ACM symposium on Theory of
computing, 114–118, 1978.

[11] Goldschlager, L. M.: A Unified Approach to models of Synchronous Parallel Ma-
chines. In Proceeding STOC ’78 Proceedings of the tenth annual ACM symposium
on Theory of computing, 89–94, 1978.

[12] Jájá, J. F.: An introduction to parallel algorithms. Addison Wesley Longman
Publishing Co., Inc. Redwood City, CA, USA, 1992. ISBN:0-201-54856-9.

[13] Kruskal, C.: Searching, Merging and Sorting in Parallel Computation. IEEE
Transactions on Computers - TC 32, 10, 942–946, 1983.

[14] Luccio, F., and Pagli, L.: A model of sequential computation with pipelined access
to memory. Math. Syst. Theory 26, 4, 343–356, 1993.

[15] Vitter, J. S.: External Memory Algorithms. In Proceedings of the 6th Annual Eu-
ropean Symposium on Algorithms, Springer-Verlag, Berlin, Germany, 1–25, 1998.

186

A Continuous Cellular Automata Approach to
Highway Traffic Modeling

Emanuele Rodaro1 and Öznur Yeldan2

1 Departamento de Matemática, Faculdade de Ciências
Universidade do Porto, 4169-007 Porto, Portugal

emanuele.rodaro@fc.up.pt
2 Dipartimento di Matematica, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
oznur.yeldan@mail.polimi.it

1 Introduction

Traffic models are fundamental resources in the management of road network.
A real progress in the study of traffic has obtained with the introduction of the
models based on cellular automata (CA). CA models (CAMs) have the ability of
being easily implemented for parallel computing because of their intrinsic syn-
chronous behavior. They are conceptually simple, since a set of simple rules can
be used to simulate a complex behavior. The traffic models based on CA are ca-
pable of capturing micro-level dynamics and relating these to macro-level traffic
flow behavior. However, they are lack of the accuracy of other microscopic traffic
models like the time-continuous car-following [1] ones where the behavior of a
driver depends only on the leading vehicle. A basic one-dimensional CAM for
highway traffic flow was first introduced by Wolfram, where he gave an exten-
sive classification of CAMs as mathematical models for self-organizing dynamic
systems [9, 10]. In 1992, Nagel and Schreckenberg proposed the first nontrivial
traffic model (the NaSch model) based on CA for single-lane highway [5]. This
paper gave rise to many other CAMs for traffic flow [3, 4, 6–8] whose common
feature is that cells represent a piece of the road (“NaSch-type” models).

In this paper, we abandon the idea of dividing the road into cells and we
introduce a new traffic model for highways using continuous cellular automata
(CCA) to introduce the continuity in space. We consider a hybrid between the
usual microscopic models (in general defined by means of a system of differential
equations) which are very accurate in predicting general traffic behavior but com-
putationally expensive, and the usual CAMs which are very efficient due to their
simplicity and intrinsic parallelism making them natural to be implemented for
parallel computing. This process of passing from the typical coarse-granularity
of CAMs to the continuity in space is done assuming that cells represent ve-
hicles. In this way, we obtain the immediate advantage of having less cells to
compute. The continuity also gives us the possibility to refine the microscopic
rules that govern the traffic dynamics using fuzzy reasoning to mimic different
real-world driver behaviors. All parameters of the decision process of the drivers

187

are modeled individually by means of fuzzy subsets, thus various types of drivers
can be taken into consideration. This gives us the possibility to study how the
heterogeneity influences the traffic macroscopically. The CCA model proposed
in this paper is defined first for a single-lane road and then we extend the model
to the multi-lane case where the extension is not as natural as “NaSch-type”
models.

2 Overview of the Model

The single lane model is a CCA SL = (Z, Σ,N , δ) where the lattice is the set of
integers and the set of cell states Σ = (K×R+

0 ×R+
0 ×R×{L, 0, R}×{L, 0, R})∪

{⊥}. A cell with the empty state ⊥ represents a cell without a vehicle. The
generic i-th non-empty cell is in the state σi(t) = (ki, xi(t), vi(t), si(t), di(t), d

′
i(t))

where

– ki represents the kind of vehicles (seen as a unique entity driver/vehicle).
It contains all the parameters such as: the maximum velocity (vmax), the
optimal velocity (vopt), the length (li), the fuzzy membership functions, the
maximum stress (smax), the minimum stress (smin), the probability functions
of lane-changing to the right lane (PR(x)) and to the left lane (PL(x)) (used
in the multi-lane model).

– xi(t) is the position, vi(t) is the velocity, and si(t) is the stress, a variable to
keep track of how much the driver is above or below of his optimal velocity.
In the single-lane model, si(t) is introduced to implement a more realistic
driver behavior since drivers usually tend to decelerate when they are moving
with a velocity higher than their optimal velocity. However, this parameter
is mainly used in the lane-changing process of the multi-lane model.

– di(t) is the variable describing the desire for: lane-changing to the left “L”,
to the right “R” and staying on his own-lane “0”, and d′i(t) is the variable
showing from which lane the i-th vehicle is transferred: from the left lane
“L”, from the right lane “R” and not transferred “0”(these variables are
used just in the multi-lane model).

N is a kind of one-dimensional extended Moore neighborhood defined by N (i) =
(i − 1, i, i + 1, i + 2), and δ : Σ4 → Σ is the local transition function de-
fined componentwise. The space is updated by xi(t + 1) = xi(t) + vi(t + 1)
(the unit of time is fixed to 1 sec.) and the velocity is updated by vi(t + 1) =
min(vmax, ∆x

+
i (t),max(0, vi(t) + Ai(t))) where Ai(t) is the acceleration calcu-

lated using two sets of fuzzy IF-THEN rules (see Fig. 1) which take into consider-
ation the distances and collision times of the back, front and next front vehicles,
and the velocity. Besides the fuzzy rules to calculate Ai(t), it is worth noting
that in the case Ai(t) is the stochastic function defined by Ai(t) = 7, 5 m/s2

with probability p and Ai(t) = 0 otherwise, we essentially obtain the Nagel and
Schreckenberg’s first stochastic model [5] with the only difference that the space
here is continuous. However, we have chosen to implement the decision of the
acceleration using two fuzzy modules to mime driver behaviors more realistically.

188

Fig. 1. A block diagram of the local transition function δ

The extension to the multi-lane case is not trivial as it is in the NaSch-type
models where adding a lane simply means adding an array of cells and where
the local transition function can naturally be extended. This is a consequence
of having a clear physical interpretation of the model given by the fact that
space is represented by cells. The most natural candidate is a union of inter-
acting single-lane CCA where the interaction is given by a transfer operation.
The process of transferring a vehicle from one lane to another depends on the
desire of the vehicle to change lane (calculated using a stochastic process de-
pending on the stress parameter) and the physical possibility of a vehicle to get
transferred to a lane (depending on some safety constraints). Suppose that we
have M -lanes represented by M -copies of the single-lane CCA SL in the con-
figurations c1, . . . , cM . We scan each lane starting from the left-most lane (in
the configuration c1) and we transfer the vehicles to the adjacent lanes. After
this process, for each lane we apply the single-lane CCA model to update the
configuration and this update is done by means of the global transition function
of SL. In this way, we obtain a new array of configurations c′1, . . . , c

′
M , and this

process represents 1 sec. of the simulation. Although this model is presented as
an array of communicating CCA, we have proved that it is possible to define a
CCA which actually simulates this model.

3 Conclusion

For a first test, we implement the model using Python with an object-oriented
philosophy of programming. Using a questionnaire we set up two kinds of vehi-
cles (long vehicles and passenger vehicles) which we have used to run a series of
experiments. Analyzing the experimental results, we study the influence of dif-
ferent composition of vehicles on the macroscopic behavior of the traffic in order
to observe the typical traffic flow phenomena (see Fig. 2). The code written in
Python does not take advantage of the CA and its typical synchronous behavior.

189

For this reason, we also adapt the code using PyCuda to partially parallelize the
multi-lane model on GPU’s and we see that it is possible to boost the speed of
execution by a factor of ∼ 10, for instance, 1000 steps of the simulator with 5000
vehicles are run in 194 sec. instead of 1608 sec. (on a laptop equipped with a
processor i7 intel and with a graphic card NVIDIA GeForce GT 555M).

Fig. 2. The effect of heterogeneity on the fundamental diagram

References

1. Brackstone, M., McDonald, M.: Car-following: A historical review. Transportation
Research Part F 2, 181–196 (1999)

2. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334,
3–33 (2005)

3. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Disorder effects
in cellular automata for two-lane traffic. Physica A: Statistical and Theoretical
Physics 265(3–4), 614–633 (1999)

4. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics
Reports 419(1), 1–64 (2005)

5. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Jour-
nal de Physique I 2(12), 2221–2229 (1992)

6. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular
automata: A systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)

7. Rickert, M., Nagel, K., Schreckenberg, M., Latour, A.: Two lane traffic simulations
using cellular automata. Physica A: Statistical and Theoretical Physics 231(4),
534–550 (1996)

8. Wagner, P., Nagel, K., Wolf, D.E.: Realistic multi-lane traffic rules for cellular
automata. Physica A: Statistical and Theoretical Physics 234(3–4), 687–698 (1997)

9. Wolfram, S.: Theory and applications of cellular automata. World Scientific Press,
Singapore (1986)

10. Wolfram, S.: A new kind of science, Wolfram Media (2002)

190

	Preamble
	Cover
	Copyright
	Foreword
	Organization
	Conference program

	Invited contributions
	Roberto Bruni, Ugo Montanari, Gordon Plotkin, Daniele TerreniOn hierarchical graphs: reconciling bigraphs, gs-monoidal theories and gs-graphs
	Paolo FerraginaAlgorithms and data structures for massive data: whatÕs next?
	Antonio RestivoOn the expressive power of the shuffle product

	Regular papers
	Artiom Alhazov, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Claudio ZandronSimulating EXPSPACE Turing machines using P systems with active membranes
	Bogdan Aman, Gabriel CiobanuBehavioural equivalences over mobile membranes with delays
	Davide Ancona, Matteo Barbieri, Viviana MascardiGlobal types for dynamic checking of protocol conformance of multi-agent systems
	Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, Roberto ZuninoCircular causality in event structures
	Davide BasileService interaction contracts as security policies
	Marcello M. Bersani, Achille FrigeriChecking satisfiability of CLTL without automata
	Marcello M. Bersani, Achille Frigeri, Alessandra CherubiniOn the complexity of pure 2D context-free grammars
	Stefano Bistarelli, Francesco Santini A secure coordination of agents with nonmonotonic soft concurrent constraint programming
	Paola Bonizzoni, Anna Paola Carrieri, Riccardo Dondi, Gabriella Trucco The binary perfect phylogeny with persistent characters
	Paola Bonizzoni, Riccardo Dondi, Giancarlo Mauri, Italo Zoppis On the complexity of the swap common superstring problem
	Giusi Castiglione, Marinella SciortinoMoore automata and epichristoffel words
	Renza Campagni, Donatella Merlini, Renzo SprugnoliData mining for a student database
	Nicoló Cesa-Bianchi, Claudio Gentile, Fabio Vitale, Giovanni ZappellaiA fast active learning algorithm for link classification
	Gabriel Ciobanu, Angelo TroinaRate-based stochastic fusion calculus and continuous time Markov chains
	Carlo Comin, Maria Paola BianchiAlgebraic characterization of the class of languages recognized by measure only quantum automata
	Gianlorenzo DÕAngelo, Mattia DÕEmidio, Daniele Frigioni, Daniele RomanoEfficient algorithms for distributed shortest paths on power-law networks
	Erika De Benedetti, Simona Ronchi Della RoccaA complete polynomial -calculus
	Giorgio Delzanno, Riccardo TraversoA formal model of asynchronous broadcast communication
	Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani h-quasi planar drawings of bounded treewidth graphs in linear area
	Christoph Dittmann, Stephan Kreutzer, Alexandru I. TomescuGraph operations on parity games and polynomial-time algorithms
	Gabriele FiciA characterization of bispecial Sturmian words
	Gabriele Fici, Zsuzsanna LiptákWords with the smallest number of closed factors
	Nicholas Fiorentini, Achille Frigeri, Liliana Pasquale, Paola SpoletiniTime modalities over many-valued logics
	Letterio GallettaA reconstruction of a type-and-effect analysis by abstract interpretation
	Paola Giannini, Daniele Mantovani, Albert ShaqiriLeveraging dynamic typing through static typing
	Elena Giachino, Tudor A. LascuLock analysis for an asynchronous object calculus
	Svetlana JakšicInput/output types for dynamic web data
	Giovanna J. Lavado, Giovanni Pighizzini, Shinnosuke SekiConverting nondeterministic automata and context-free grammars into Parikh equivalent deterministic automata
	Marina Lenisa, Daniel PellariniHoare logic for multiprocessing (work in progress)
	Jianyi LinSize constrained clustering problems in fixed dimension
	Violetta Lonati, Dino Mandrioli, Matteo PradellaAutomata and logic for Floyd languages
	Davide Maglia, Nicoletta Sabadini, Filippo Schiavio, Robert F.C. WaltersThe algebra and geometry of networks
	Andreas Malcher, Katja Meckel, Carlo Mereghetti, Beatrice PalanoOn pushdown store languages
	Federico Mari, Igor Melatti, Ivano Salvo, Enrico TronciUndecidability of quantized state feedback control for discrete time linear hybrid systems
	Emanuele Milani, Nicola ZagoExploiting fine grained parallelism on the SPE
	Emanuele Rodaro, Öznur YeldanA continuous cellular automata approach to highway traffic modeling

