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Descriptional complexity: questions

Take the length of description as complexity measure.

Ü How succinctly can a model represent a formal language in
comparison with other models?

Ü What is the maximum blow-up when changing from one
model to another? (Upper bounds)

Ü Are there languages such that a maximum blow-up is
achieved? (Lower bounds)

Results

Ü Recursive trade-offs

Ü Non-recursive trade-offs
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Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)
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Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)



Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)
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Pushdown store languages

The pushdown store language of a PDA M is the set P (M) of all
words occurring on the pushdown store along accepting
computations of M .

P (M) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :
(q0, xy, Z0) `∗ (q, y, u) `∗ (f, λ, γ), for some γ ∈ Γ∗}.

Theorem (Greibach 1967)

Let M be a PDA. Then, P (M) is a regular language.
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Example

The language { anbn | n ≥ 1 } is accepted by the following
(deterministic) PDA

M = 〈{q0, q1, q2}, {a, b}, {Z,Z0}, δ, q0, Z0, {q2}〉

such that

δ(q0, a, Z0) = {(q0, ZZ0)}, δ(q0, a, Z) = {(q0, ZZ)},
δ(q0, b, Z) = {(q1, λ)},
δ(q1, b, Z) = {(q1, λ)}, δ(q1, λ, Z0) = {(q2, Z0)}.

The pushdown store language is P (M) = Z∗Z0.
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Finite automata construction
Autebert, Berstel, and Boasson (1997) propose the following
construction:

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. For every q ∈ Q,

Acc(q) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) `∗ (q, y, u)},
Co-Acc(q) = {u ∈ Γ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ∗ : (q, y, u) `∗ (f, λ, u′)}.
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Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.
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Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.
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Lower bounds

Consider the language family Lm,k for m ≥ 2 and k ≥ 1:

Lm,k = {(am2
bm

2
)(k−1)/2am2

c}, for odd k,

Lm,k = {(am2
bm

2
)k/2c}, for even k.

Lm,k can be accepted by a PDA with O(m) states and O(k)
pushdown symbols whereas every NFA for P (Lm,k) needs at least
Ω(m2 · k) states.

Theorem

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA
for P (M) exists with O(|Q|2|Γ|) states. On the other hand,
there exist infinitely many PDA MQ,Γ of size O(|Q| · |Γ|) such
that every NFA accepting P (MQ,Γ) needs Ω(|Q|2|Γ|) states.
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Special case (1): PDA that never pop

Ü Observe that P (M) = {u ∈ Γ∗ | u ∈ Acc(q) and q ∈ F}.

Ü An NFA for P (M) then needs at most |Q| · |Γ|+ 1 states.

Ü It is here possible to find a tight lower bound:

Lemma

For m, k ≥ 2, there exist PDA Mm,k which can never pop
having m states and k pushdown symbols, for which every
NFA for P (Mm,k) needs at least k ·m+ 1 states.
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Special case (2): stateless PDA

Ü General construction gives an upper bound of 3|Γ|+ 6.

Ü Improved construction gives an upper bound of |Γ|+ 1.

Ü It is also possible to find a tight lower bound:

Lemma

For any k ≥ 0, there exists a stateless PDA Mk having |Γk| =
k + 1 pushdown symbols, for which every NFA for P (Mk)
needs at least k + 2 = |Γk|+ 1 states.
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Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.
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Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.
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Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether:
(i) P (M) is a finite set. (ii) P (M) is a finite set of words
having at most length k, for a given k ≥ 1.

A PDA M is of constant height whenever there exists a constant
k ≥ 1 such that, for any word in L(M), there exists an accepting
computation along which the pushdown store never contains more
than k symbols.

Corollary

Given an unambiguous PDA M , it is P-complete to decide
whether: (i) M is a constant height PDA. (ii) M is a PDA
of constant height k, for a given k ≥ 1.
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Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.
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