
Descriptional Complexity of
Pushdown Store Languages

Andreas Malcher Katja Meckel
Carlo Mereghetti Beatrice Palano

Institut für Informatik, Universität Giessen, Germany

Dipartimento di Informatica, Università degli Studi di Milano
Milano, Italy

ICTCS 2012, Varese, Italy

Descriptional complexity: questions

Take the length of description as complexity measure.

Ü How succinctly can a model represent a formal language in
comparison with other models?

Ü What is the maximum blow-up when changing from one
model to another? (Upper bounds)

Ü Are there languages such that a maximum blow-up is
achieved? (Lower bounds)

Results

Ü Recursive trade-offs

Ü Non-recursive trade-offs

Descriptional complexity: questions

Take the length of description as complexity measure.

Ü How succinctly can a model represent a formal language in
comparison with other models?

Ü What is the maximum blow-up when changing from one
model to another? (Upper bounds)

Ü Are there languages such that a maximum blow-up is
achieved? (Lower bounds)

Results

Ü Recursive trade-offs

Ü Non-recursive trade-offs

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Devices and related structures

Not only devices themselves are of interest, but also structures
related to them.

Examples:

Ü Turing machines and the set of valid computations
(Hartmanis 1967)

Ü Quantum finite automata and control languages
(Mereghetti, Palano 2006)

Ü Pushdown automata with context-dependent nondeterminism
(Kutrib, Malcher 2006)

Ü Grammars and regulated rewriting (Dassow, Păun 1989)

Ü . . .

Ü Finite automata and the size of their syntactic monoid
(Holzer, König 2002)

Pushdown store languages

The pushdown store language of a PDA M is the set P (M) of all
words occurring on the pushdown store along accepting
computations of M .

P (M) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :
(q0, xy, Z0) `∗ (q, y, u) `∗ (f, λ, γ), for some γ ∈ Γ∗}.

Theorem (Greibach 1967)

Let M be a PDA. Then, P (M) is a regular language.

Pushdown store languages

The pushdown store language of a PDA M is the set P (M) of all
words occurring on the pushdown store along accepting
computations of M .

P (M) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :
(q0, xy, Z0) `∗ (q, y, u) `∗ (f, λ, γ), for some γ ∈ Γ∗}.

Theorem (Greibach 1967)

Let M be a PDA. Then, P (M) is a regular language.

Example

The language { anbn | n ≥ 1 } is accepted by the following
(deterministic) PDA

M = 〈{q0, q1, q2}, {a, b}, {Z,Z0}, δ, q0, Z0, {q2}〉

such that

δ(q0, a, Z0) = {(q0, ZZ0)}, δ(q0, a, Z) = {(q0, ZZ)},
δ(q0, b, Z) = {(q1, λ)},
δ(q1, b, Z) = {(q1, λ)}, δ(q1, λ, Z0) = {(q2, Z0)}.

The pushdown store language is P (M) = Z∗Z0.

Example

The language { anbn | n ≥ 1 } is accepted by the following
(deterministic) PDA

M = 〈{q0, q1, q2}, {a, b}, {Z,Z0}, δ, q0, Z0, {q2}〉

such that

δ(q0, a, Z0) = {(q0, ZZ0)}, δ(q0, a, Z) = {(q0, ZZ)},
δ(q0, b, Z) = {(q1, λ)},
δ(q1, b, Z) = {(q1, λ)}, δ(q1, λ, Z0) = {(q2, Z0)}.

The pushdown store language is P (M) = Z∗Z0.

Finite automata construction
Autebert, Berstel, and Boasson (1997) propose the following
construction:

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. For every q ∈ Q,

Acc(q) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) `∗ (q, y, u)},
Co-Acc(q) = {u ∈ Γ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ∗ : (q, y, u) `∗ (f, λ, u′)}.

Finite automata construction
Autebert, Berstel, and Boasson (1997) propose the following
construction:
Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. For every q ∈ Q,

Acc(q) = {u ∈ Γ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) `∗ (q, y, u)},
Co-Acc(q) = {u ∈ Γ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ∗ : (q, y, u) `∗ (f, λ, u′)}.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.

Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction

Then, the pushdown store language is

P (M) =
⋃
q∈Q

Acc(q) ∩ Co-Acc(q).

Finally, for every q ∈ Q, a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q) is constructed.

Estimation of the size:

Ü An NFA for Acc(q) needs |Q| · |Γ|+ 1 states.

Ü An NFA for Co-Acc(q) needs |Q|+ 1 states.

Ü An NFA for the intersection Acc(q) ∩ Co-Acc(q) needs
(|Q| · |Γ|+ 1)(|Q|+ 1) states.

Ü The union over all q ∈ Q gives a factor |Q|.
Ü Altogether, we need |Q|3|Γ|+ |Q|2(|Γ|+ 1) + |Q|+ 1 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Finite automata construction improved

Avoid the union (factor |Q|) by considering

Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ∗ | u ∈ Co-Acc(q)}.

Then, P (M) is Acc(Q) ∩ Co-Acc(Q) where the first symbol is
removed.

Estimation of the size:

Ü An NFA for Acc(Q) needs |Q|(|Γ|+ 1) + 1 states.

Ü An NFA for Co-Acc(Q) needs |Q|+ 2 states.

Ü An NFA for the intersection Acc(Q) ∩ Co-Acc(Q) needs
(|Q|(|Γ|+ 1) + 1)(|Q|+ 2) states.

Ü The removal of the first symbol is for free.

Ü Altogether, we need |Q|2(|Γ|+ 1) + |Q|(2|Γ|+ 3) + 2 states.

Lower bounds

Consider the language family Lm,k for m ≥ 2 and k ≥ 1:

Lm,k = {(am2
bm

2
)(k−1)/2am2

c}, for odd k,

Lm,k = {(am2
bm

2
)k/2c}, for even k.

Lm,k can be accepted by a PDA with O(m) states and O(k)
pushdown symbols whereas every NFA for P (Lm,k) needs at least
Ω(m2 · k) states.

Theorem

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA
for P (M) exists with O(|Q|2|Γ|) states. On the other hand,
there exist infinitely many PDA MQ,Γ of size O(|Q| · |Γ|) such
that every NFA accepting P (MQ,Γ) needs Ω(|Q|2|Γ|) states.

Lower bounds

Consider the language family Lm,k for m ≥ 2 and k ≥ 1:

Lm,k = {(am2
bm

2
)(k−1)/2am2

c}, for odd k,

Lm,k = {(am2
bm

2
)k/2c}, for even k.

Lm,k can be accepted by a PDA with O(m) states and O(k)
pushdown symbols whereas every NFA for P (Lm,k) needs at least
Ω(m2 · k) states.

Theorem

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA
for P (M) exists with O(|Q|2|Γ|) states. On the other hand,
there exist infinitely many PDA MQ,Γ of size O(|Q| · |Γ|) such
that every NFA accepting P (MQ,Γ) needs Ω(|Q|2|Γ|) states.

Lower bounds

Consider the language family Lm,k for m ≥ 2 and k ≥ 1:

Lm,k = {(am2
bm

2
)(k−1)/2am2

c}, for odd k,

Lm,k = {(am2
bm

2
)k/2c}, for even k.

Lm,k can be accepted by a PDA with O(m) states and O(k)
pushdown symbols whereas every NFA for P (Lm,k) needs at least
Ω(m2 · k) states.

Theorem

Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA
for P (M) exists with O(|Q|2|Γ|) states. On the other hand,
there exist infinitely many PDA MQ,Γ of size O(|Q| · |Γ|) such
that every NFA accepting P (MQ,Γ) needs Ω(|Q|2|Γ|) states.

Special case (1): PDA that never pop

Ü Observe that P (M) = {u ∈ Γ∗ | u ∈ Acc(q) and q ∈ F}.

Ü An NFA for P (M) then needs at most |Q| · |Γ|+ 1 states.

Ü It is here possible to find a tight lower bound:

Lemma

For m, k ≥ 2, there exist PDA Mm,k which can never pop
having m states and k pushdown symbols, for which every
NFA for P (Mm,k) needs at least k ·m+ 1 states.

Special case (1): PDA that never pop

Ü Observe that P (M) = {u ∈ Γ∗ | u ∈ Acc(q) and q ∈ F}.
Ü An NFA for P (M) then needs at most |Q| · |Γ|+ 1 states.

Ü It is here possible to find a tight lower bound:

Lemma

For m, k ≥ 2, there exist PDA Mm,k which can never pop
having m states and k pushdown symbols, for which every
NFA for P (Mm,k) needs at least k ·m+ 1 states.

Special case (1): PDA that never pop

Ü Observe that P (M) = {u ∈ Γ∗ | u ∈ Acc(q) and q ∈ F}.
Ü An NFA for P (M) then needs at most |Q| · |Γ|+ 1 states.

Ü It is here possible to find a tight lower bound:

Lemma

For m, k ≥ 2, there exist PDA Mm,k which can never pop
having m states and k pushdown symbols, for which every
NFA for P (Mm,k) needs at least k ·m+ 1 states.

Special case (1): PDA that never pop

Ü Observe that P (M) = {u ∈ Γ∗ | u ∈ Acc(q) and q ∈ F}.
Ü An NFA for P (M) then needs at most |Q| · |Γ|+ 1 states.

Ü It is here possible to find a tight lower bound:

Lemma

For m, k ≥ 2, there exist PDA Mm,k which can never pop
having m states and k pushdown symbols, for which every
NFA for P (Mm,k) needs at least k ·m+ 1 states.

Special case (2): stateless PDA

Ü General construction gives an upper bound of 3|Γ|+ 6.

Ü Improved construction gives an upper bound of |Γ|+ 1.

Ü It is also possible to find a tight lower bound:

Lemma

For any k ≥ 0, there exists a stateless PDA Mk having |Γk| =
k + 1 pushdown symbols, for which every NFA for P (Mk)
needs at least k + 2 = |Γk|+ 1 states.

Special case (2): stateless PDA

Ü General construction gives an upper bound of 3|Γ|+ 6.

Ü Improved construction gives an upper bound of |Γ|+ 1.

Ü It is also possible to find a tight lower bound:

Lemma

For any k ≥ 0, there exists a stateless PDA Mk having |Γk| =
k + 1 pushdown symbols, for which every NFA for P (Mk)
needs at least k + 2 = |Γk|+ 1 states.

Special case (2): stateless PDA

Ü General construction gives an upper bound of 3|Γ|+ 6.

Ü Improved construction gives an upper bound of |Γ|+ 1.

Ü It is also possible to find a tight lower bound:

Lemma

For any k ≥ 0, there exists a stateless PDA Mk having |Γk| =
k + 1 pushdown symbols, for which every NFA for P (Mk)
needs at least k + 2 = |Γk|+ 1 states.

Special case (2): stateless PDA

Ü General construction gives an upper bound of 3|Γ|+ 6.

Ü Improved construction gives an upper bound of |Γ|+ 1.

Ü It is also possible to find a tight lower bound:

Lemma

For any k ≥ 0, there exists a stateless PDA Mk having |Γk| =
k + 1 pushdown symbols, for which every NFA for P (Mk)
needs at least k + 2 = |Γk|+ 1 states.

Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.

Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.

Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.

Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.

Special case (3): counter PDA

Ü For a counter PDA M , P (M) is either Z∗Z0 or Z≤hZ0 for
some fixed h ≥ 0.

Ü It can be shown via pumping arguments that h is bounded by
the number of states |Q|, if P (M) = Z≤hZ0.

Ü Then, |Q|+ 2 is an upper bound.

Ü Language Lm = {λ, am} for m ≥ 1 gives a tight lower bound.

Lemma

Let M be a counter PDA with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q|+ 2. More-
over, this size bound is optimal.

Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.

Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.

Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.

Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.

Applications: complexity of decidability questions

Lemma

Let M be a PDA. Then, an NFA for P (M) can be constructed
in deterministic polynomial time.

Ü For the construction of the set Acc(Q), the reachability of
O(|Q|2|Γ|2) pairs has to be tested.

Ü Each test can be seen as an instance of the emptiness problem
for context-free languages which is in P.

Ü An NFA for Acc(Q) can be constructed in deterministic
polynomial time.

Ü Similarly, an NFA for Co-Acc(Q) can be constructed in
deterministic polynomial time as well as for the intersection of
both and the removal of the first symbol.

Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether:
(i) P (M) is a finite set. (ii) P (M) is a finite set of words
having at most length k, for a given k ≥ 1.

A PDA M is of constant height whenever there exists a constant
k ≥ 1 such that, for any word in L(M), there exists an accepting
computation along which the pushdown store never contains more
than k symbols.

Corollary

Given an unambiguous PDA M , it is P-complete to decide
whether: (i) M is a constant height PDA. (ii) M is a PDA
of constant height k, for a given k ≥ 1.

Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether:
(i) P (M) is a finite set. (ii) P (M) is a finite set of words
having at most length k, for a given k ≥ 1.

A PDA M is of constant height whenever there exists a constant
k ≥ 1 such that, for any word in L(M), there exists an accepting
computation along which the pushdown store never contains more
than k symbols.

Corollary

Given an unambiguous PDA M , it is P-complete to decide
whether: (i) M is a constant height PDA. (ii) M is a PDA
of constant height k, for a given k ≥ 1.

Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether:
(i) P (M) is a finite set. (ii) P (M) is a finite set of words
having at most length k, for a given k ≥ 1.

A PDA M is of constant height whenever there exists a constant
k ≥ 1 such that, for any word in L(M), there exists an accepting
computation along which the pushdown store never contains more
than k symbols.

Corollary

Given an unambiguous PDA M , it is P-complete to decide
whether: (i) M is a constant height PDA. (ii) M is a PDA
of constant height k, for a given k ≥ 1.

Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether P (M)
is a subset of Z∗Z0.

Corollary

Given a PDA M , it is P-complete to decide whether M is
essentially a counter machine.

Applications: complexity of decidability questions

Lemma

Given a PDA M , it is P-complete to decide whether P (M)
is a subset of Z∗Z0.

Corollary

Given a PDA M , it is P-complete to decide whether M is
essentially a counter machine.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

Summary and open questions

Ü Tight bounds of Θ(|Q|2|Γ|) in the general case.

Ü Better and also tight bounds for special cases.

Ü Some decidability questions are solvable in P and P-hard.

Ü Consider other special cases, e.g., m-counter PDA or
turn-bounded PDA.

Ü Investigate trade-offs occurring when determinizing the NFA
for P (M).

Ü Extend the decidability of being a constant height PDA to
arbitrary PDA.

