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Problem and motivation

Clustering or cluster analysis: classical method
in statistics and unsupervised machine
learning.

Clustering: grouping objects into “significant
classes” with respect to a similarity measure

k-Means or sum-of-squares clustering:
NP-hard in arbitrary dimension [Aloise et al.
2009] or with arbitrary k [Mahajan et al.
2009, Vattani 2009].

Incorporating a priori information on the
clusters into the algorithms can increase
clustering performance [Wagstaff & Cardie
2000, Bradley et al. 2000, Tung et al. 2001]

A priori information =⇒ Constrained
clustering

In this work: constraints on the cardinalities
[Zhu et al. 2010]
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Definitions

Fixed ‖ ‖p (p ≥ 1):

X = {x1, ..., xn} ⊂ Rd

cluster := A ⊆ X

p-centroid := CA = argminµ∈Rd

∑
x∈A ‖x − µ‖

p
p

cost W (Ai ) :=
∑

x∈Ai
‖x − CAi ‖

p
p

k-clustering := k-partition {A1, ...,Ak} of X

cost of the clustering := W (A1, ...,Ak) =
∑

i W (Ai )
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Preliminary definitions

Size Constrained Clustering (SCC)
Instance: • positive integer d

• positive integer k
• X = {x1, ..., xn} ⊂ Rd

• positive integers m1, ...,mk s.t.
∑

mi = n

Admissible solutions: k-partition {A1, ...,Ak} of X with |Aj | = mj

Cost: W (A1, ...,Ak)
Type: min

Fixing k or d : k-SCC, SCC-d , k-SCC-d
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Preliminary definitions

Relaxed Constraints Clustering (RCC)
Instance: • positive integer d

• positive integer k
• X = {x1, ..., xn} ⊂ Rd

• set positive integers M = {m1, ...,m`}
Admissible solutions: k-partition {A1, ...,Ak} of X with |Aj | ∈M

Cost: W (A1, ...,Ak)
Type: min

REMARK:

RCC with M = {1, ..., n} corresponds to the classical (unconstrained)
clustering.

When k = 2, the SCC problem and the RCC problem with |M| = 2 are
equivalent.
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Results (1)

Previous results [Bertoni et al. 2012]:

k-SCC with k = 2 and m = n
2

is NP-hard for all norm ‖ ‖p
SCC-d is NP-hard even if d = 1

Here we present:

RCC-d is NP-hard even if d = 2. Polynomial in case d = 1

Evidence that for non-integer rational p the problem cannot be solved in
polynomial time
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Results (2)

The problem could be solved in polynomial time only when:

– d , k are fixed

– p is integer

For p = 2, SCC can be solved in the plane with k = 2 in time
O(n 3
√

m · log2 n).

For p = 2, all the SCC problems, with m = 1, ..., bn/2c, can be solved at
once by an algorithm working in time O(n2 · log n).

For integer p > 2, RCC is solved in fixed dimension with k = 2 in
polynomial time (even with p coded in unary in the instance).
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RCC-d is NP-hard

Consider the norm ‖ ‖2.

Theorem

RCC-d is NP-hard even if d = 2.

This result is obtained as a consequence of the reduction:

Planar 3-SAT <P {2, 3}-RCC

Problem: {2, 3}-RCC
Instance: • X = {x1, ..., xn} ⊂ Q2

• positive integer k
• positive rational λ

Question: Is there a partition {A1, ...,Ak} of X s.t. W (A1, ...,Ak) ≤ k and
|Ai | ∈ {2, 3}?
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Planar 3-SAT problem

A Planar 3-CNF Φ = (x1 ∨ x̄2 ∨ x4)︸ ︷︷ ︸
C1

∧ (x̄1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x̄2 ∨ x3 ∨ x̄4)︸ ︷︷ ︸
C3

Problem: Planar 3-SAT
Instance: Planar 3-CNF Φ
Question: Is Φ satisfiable?

In the example above Φ is satisfied by (x1, x2, x3, x4) = (F ,F ,T ,T ).
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Proof of the reduction

Φ = (x1 ∨ x̄2 ∨ x4)︸ ︷︷ ︸
C1

∧ (x̄1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x̄2 ∨ x3 ∨ x̄4)︸ ︷︷ ︸
C3

Variables x1, x2, x3, x4, clauses C1,C2,C3 =⇒ planar graph G :

Embedded in rational
coordinate grid
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Embedding some points into rational coordinate grid

Lemma

Consider the points in figure below and let A = {z , b1, c1},B = {z , b2, c2}. We
have that W (A) = W (B) = 23402/675.
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Localisation of p-centroid

When p is a non-integer rational we can see that also the minor problem of
localising the centroid of a set of integers is far from being easy.

p-LC Problem: given integers x1, ..., xn and an integer h, decide whether
the p-centroid of {x1, ..., xn} is > h.

SQRT-Sum Problem: requires to decide, given positive integers
a1, ..., aq, b1, ..., br , whether

√
a1 + ...+

√
ar >

√
b1 + ...+

√
br .

Theorem

SQRT-Sum is polynomially reducible to 3
2
-LC.
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SQRT-Sum

OPEN PROBLEM:
Is SQRT-Sum in NP? [Garey et al. 1976]

Best result: SQRT-Sum ∈ CH [Allender et al. 2006]
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Subproblems

Problem

GENERAL CLUSTERING: Hard

What happens when

d is fixed (e.g. d = 2)

k is fixed (e.g. k = 2)
?

Fixing k = 2 is particularly interesting for being the major step repeated in the
divisive hierarchical clustering methods.
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Size constrained 2-clustering on the plane

Case:
R2 endowed with ‖ ‖2

Theorem

The SCC problem in the plane with k = 2 and constraint |A| = m is solvable in
O(n · 3

√
m · log2 n) time.

REMARK: The problem is equivalent to RCC in the plane with k = 2,
M = {m, n −m}.
The proof is based on:

1 Separation Property
2 Efficient dynamic data structures for Convex Hull:

O(n log2 n) [Overmars & Van Leeuwen 1981]
O(n log n) amortized time [Chan 2001]

3 Upper bound O(n 3
√

k) for the number of k-sets of n points on the plane
[Erdös et al. 1973, Dey 1998]
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Separation Property

Theorem

Consider the norm ‖ ‖p with integer p > 1. Let

X = {x1, ..., xn} ⊂ Rd , and

{A,B} be the optimal solution of SCC with point set
X , k = 2 and constraint |A| = m

Then there exists c ∈ R such that:
∀xi ∈ A ‖xi − CA‖pp − ‖xi − CB‖pp < c
∀xj ∈ B ‖xj − CA‖pp − ‖xj − CB‖pp > c

That is, A and B are separated by a hypersurface
H : ‖x − a‖pp − ‖x − b‖pp − c = 0

Particular cases:

d = 1 =⇒ String Property [Fisher 1958].

d = 2, p = 2 =⇒ Separation with straight lines!

Jianyi Lin Size constrained clustering problems in fixed dimension



Introduction
Computational complexity of size constrained clustering

Conclusions

Hardness results
Fixing dimension and # of clusters

Constructing the m-sets in efficient manner

Idea of the algorithm:

Convex hulls Conv(A) and
Conv(Ā), and a bitangent
(a, b).

Find the next bitangent and
swap two points c ∈ A, d ∈ Ā,
thus obtaining new clusters A′

and Ā′

Calculate the cost of the new
2-clustering W (A′, Ā′) with
direct formula

Reiterating those abstract
operations corresponds to
visiting all the possible m-sets
of X
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Bound on the abstract operations and dynamic data structures

DEF.: Given X = {x1, ..., xn} ⊂ R2, a m-set is a subset A ⊂ X with |A| = m
s.t. A and Ā are separable by a straight line.

OPEN QUESTION: How many? [Erdös 1973]

Upper bound:
O(n

√
m) [Erdös 1973]

O(n 3
√
m) [Dey 1998]

Lower bound:
neΩ(

√
log m) [Tóth 2001]

Operations on efficient dynamic data structures for convex hulls:

Only INSERTION: O(log n) [Preparata 1979]

INSERTION+DELETION: O(log2 n) [Overmars & Van Leeuwen 1981]

INSERTION+DELETION: O(log n) amortized time [Chan 2001]

Jianyi Lin Size constrained clustering problems in fixed dimension



Introduction
Computational complexity of size constrained clustering

Conclusions

Hardness results
Fixing dimension and # of clusters

Full planar 2-RCC

Instead of solving RCC in the plane with k = 2 for a particular value of the
constraint |A| = m, we may ask to solve the RCC problem in the plane with
k = 2 for all possible constraints |A| = 1, ..., bn/2c. Such a problem can be
called Full 2-RCC.

Theorem

There is an algorithm for solving Full 2-RCC in the plane in time O(n2 · log n).

This algorithm outputs all the optimal 2-clusterings {Am, Ām} of X with
constraint |Am| = m, for all m, 1 ≤ m ≤ bn/2c.
It is based on a smart enumeration of the pairs of points in X , which
correspond to the straight lines separating the clusters, as stated in the
Separation Property:

for every point x ∈ X : order X r {x} w.r.t. angle (with pole in x), then
enumerate all separating straight lines (x , y), with y ∈ X r {x} w.r.t. this
order;
cost of 2-clustering computed in O(1) time.
∴ O(n2 log n)
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What if p > 2

Case: p is even

Separating curve:
(x − a1)p + (y − a2)p − (x − b1)p − (y − b2)p − c = 0

Yields a polynomial in variables x , y and parameters a1, a2, b1, b2, c.

The description can be generalized for d > 2.

Formulation of the size constrained clustering problem in Real Algebraic
Geometry.
Main tool: CAD [Collins 1975]. CAD’s applications: quantifier elimination in
1st-order theory of reals, robot inverse kinematic.
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2-clustering problem with even p

Theorem

The 2-SCC problem with size constraints m, 1 ≤ m ≤ bn/2c, in fixed
dimension d with norm ‖ ‖p, even integer p, can be solved in polynomial time
w.r.t. to the input size and p

Proof Sketch: X 3 xi 7−→ pi ∈ R[α] in the surface’s parameters
α = (µ1, ..., µd , λ1, ..., λd , γ):

pi (µ, λ, γ) = ‖xi − µ‖pp − ‖xi − λ‖pp − γ F = {pi ∈ R[α] : xi ∈ X}

F =⇒ R2d+1 = R1 t ... t Rt︸ ︷︷ ︸ with t = (np)O(1)d

Rj ’s are semi-algebraic sgn(pi (Rj)) ∈ {+1,−1}

CAD algorithm constructs: representatives ᾱj ∈ Rj ∩Q2d+1 using
theory of elimination through resultant
Sturm sequences and root bounds to isolate algebraic roots

ᾱj 7−→ clustering {Aj , Āj} of X

Comparison of two 2-clusterings by a numerical approximation technique
exploiting Canny’s Gap.
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2-clustering problem with odd p

Case: p is odd

Problem: the separating hypersurface is no longer algebraic. Nonetheless, the
case of odd p can be directly reduced to the case of even p by easily enriching
the collection F = {p1, ..., pn}:

pi (µ, λ, γ) = ‖xi − µ‖pp − ‖xi − λ‖pp − γ
By eliminating absolute values:

pi 7−→ Ψi = {p̄iσiτi ∈ R[α] : σi , τi ∈ {+1,−1}d}
G := {polynomials (xi` − µ`), (xi` − λ`)} arguments of absolute values

H = G ∪Ψ1 ∪ ... ∪Ψn

This allows one to take into account the further decomposition of the
parameter space R2d+1 due to the absolute value function.
Prop.: A decomposition of R2d+1 adapted to H is also adapted to F .

Theorem

The 2-SCC problem with size constraints m, 1 ≤ m ≤ bn/2c, in fixed
dimension d with norm ‖ ‖p, odd integer p, can be solved in polynomial time
w.r.t. the input size and p.
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Final words

Size constrained clustering is difficult in general.

Instead, fixing # of clusters and dimension yields polynomial-time
algorithms.

SCC with euclidean norm can be tackled by methods of combinatorial
geometry.

When p > 2 the SCC can be studied within the frame of real algebraic
geometry, but not complex algebraic geometry.

Open problems: avoid CAD; approximation technique for constrained
clustering; heuristic for constrained clustering;

Recent considerations for avoiding CAD
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Questions?

Thank you for your attention!
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Canny’s Gap

Theorem (Canny’s Gap)

Let (x1, ..., xN) be a solution of an algebraic system of N equations in N
unknowns having a finite number of solutions, with maximum degree d and
with coefficients in Z smaller or equal to M in absolute value. Then for each
i = 1, ...,N:

either xi = 0 or |xi | > (3Md)−NdN

Powerful tool for numerically solving symbolic decision problems

Decide whether an algebraic number represented by algebraic equation is
null
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