Global Types for Dynamic Checking of Protocol
Conformance of Multi-Agent Systems

Davide Ancona, Matteo Barbieri and Viviana Mascardi
Universita di Genova

Italian Conference on Theoretical Computer Science, Varese,
September 19-21, 2012

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 1/36

Outline

0 Background on multi-agent systems

@ Previous work (Declarative Agent Languages and Technologies -
DALT 2012, Ancona, Drossopoulou, Mascardi)

e Global types: formalization
e Expressive power of global types (by examples)

e An extension to enhance the expressive power (not in the paper)

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 2/36

@ Conclusion and future work

Outline

0 Background on multi-agent systems

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Multi-agent systems (MASS)

@ industrial-strength technology for integrating and coordinating
heterogeneous systems

@ intrinsically distributed nature, asynchronous message passing

@ agent-oriented programming languages are typically dynamically
typed

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 4/36

Jason

@ AgentSpeak: a logic-based agent-oriented programming
language, based on the belief-desire-intention (BDI) software
model

@ Jason: open source interpreter for an extended version of
AgentSpeak, supporting a Prolog-like language for specifying
agents behavior

@ communication model: speech-act based, with performatives
(a.k.a. illocutionary forces)

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 5/36

Sending actions in Jason

.send (recipient, performative, content) }

@ recipient: the id of the agent that will receive the message
@ performative: specifies the semantics/aim of the message

tell untell achieve unachieve tell-how
untell-how ask-if ask-all ask-how

@ content: a (possibly empty) set of atoms or plans

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 6/36

Outline

@ Previous work (Declarative Agent Languages and Technologies -
DALT 2012, Ancona, Drossopoulou, Mascardi)

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Protocols and multi-agent systems

A protocol represents an agreement on how participating
agents [systems] interact with each other. Without a protocol,
it is hard to do a meaningful interaction: participants simply
cannot communicate effectively.

[From the manifesto of Scribble, a language to describe application-level
protocols among communicating systems initially designed by Kohei Honda
and Gary Brown, http://www. jboss.org/scribble/]

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 8/36

http://www.jboss.org/scribble/

Protocol specification

Interaction diagrams in FIPA AUML
@ specify the behavior of a system from a global point of view
@ suitable for humans, but not for verification

A first example: ping-pong protocol

sd Ping-Pong J

‘ alice: Ping ‘ ‘ bob: Pong ‘
I I
Joop |

tell(ping) =)
I I
= telllpong) |
I I
I I
I I

[FIPA Modeling: Interaction Diagrams, ﬁ

http://www.auml.org/auml/documents/ID-03-07-02.pdf]
D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 9/36

http://www.auml.org/auml/documents/ID-03-07-02.pdf

Protocol specification: a formal approach

protocol =
(possibly infinite) set of (possibly infinite) sequences of sending actionsJ

Example 1: ping-pong protocol

msg(alice,bob, tell, ping) msg(bob,alice, tell, pong)
msg (alice, bob,tell,ping) msg(bob,alice,tell, pong)

sd Ping-Pong J

‘ alice: Ping ‘ ‘ bob: Pong ‘
I

I

Joop |
tell(ping) ~J

| |

[tell(pong)

I I

| |

—— W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 10/36

Protocols as global types

Example 1: ping-pong protocol
PingPong = «aq:a2:PingPong
@ where a4 sending action type corresponding to

msg (alice,bob,tell, ping)

@ where as sending action type corresponding to
msqg (bob,alice, tell, pong)

@ sending action types = monadic predicates

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 11/36

Global types as Prolog cyclic terms

@ Modern Prolog systems (and Jason as well) support cyclic terms
(a.k.a. regular or rational terms)

@ Example: the unification problem

PingPong = ping:pong:PingPong.

succeeds with the answer PingPong = ping:pong:PingPong
@ Regular terms naturally support recursive types

@ Regular Prolog terms: a very compact representation of protocol
specifications through global types

@ Protocols can be easily manipulated and exchanged by agents

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 12/36

Automatic generation of a self-monitoring MAS

Jason implementation of a MAS S

o

4 N
Protocol specification with a global type

.

(" N

Sending action types as predicates

o

—p

P

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Centralized monitor agent

7 A

@ protocol conformance dynamically checked by a monitor agent M
@ other agents ask M permission to send their messages

@ the monitor notifies all failures
@ the monitor checks responsiveness of the agents ﬁ

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 14 /36

Outline

Q Global types: formalization

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Global types

The set of regular terms defined on the following constructors:

A (empty sequence), representing the singleton set {¢} containing
the empty sequence e.

a:7 (seq), representing the set of all sequences whose first
element is a sending action matching type «, and the remaining
part is a sequence in the set represented by 7.

71 + 72 (choice), representing the union of the sequences of
and 7.

71|12 (fork), representing the set obtained by shuffling the
sequences in 71 with the sequences in 7 .

71 - To (concat), representing the set of sequences obtained by
concatenating the sequences of 7y with those of 7».

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 16/36

Contractive global types

A global type 7 is contractive if it does not contain paths whose nodes

can only be constructors in {+, |, -} (such paths are necessarily
infinite).

Examples:
@ acontractive type: T1 = (A + «:T1)
@ anon contractive type: T2 = A + (T2 | T2) + (T2 - T2)

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 17/36

Transition rules

@ 7 contractive global types, .4 sending actions
@ total function 6:7 x A — Pyn(7T)

a
@ 71 = 1o means 7 € §(7y,)

a a
T = Ty T2 = Th
(seqQ)— 5 aca (choice-l) ——————— (choice-r) —————=—
a a a
T — T T+ T2 — Ty T+ T2 = Tp
a / a /
T — Ty T2 — Ty
(fork-l) —————— (fork-n) —————=—
! /
7'1|7'2—>7’1 T2 T1|T2—>7'1|7'2
a a
(cat-1) 2 (cat-r) B — e(my)
T{ - Tp — T{ T2 Ty - Tp — Th

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 18/36

Definition of ()

¢(7) holds if and only if 7 contains A

€(71) NG)

(e-Ichoice) (e-rchoice)

€(m1) e(m2) e(m1) e(m2)
(e-fork)————— . (T1 |T2) (e—cat)—6 (T1] 7_2)

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 19/36

Interpretation of global types

Run
A run p for 1 is a sequence Ty e T & 2 Thn+1 it of
valid transitions such that

@ either the sequence is infinite,

@ or it terminates with the type 7 (with kK > 0) s.t. e(7%).

A(p) = sequence of sending actions apay ... an ... contained in p.

Interpretation
[7o] = {A(p) | pisarunforr }

v

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 20/36

Results

Proposition 1

Let 7 be a contractive type. Either ¢(7) holds or there exist aand 7’ s.t.

a
T —T.

Proposition 2

If 7 is contractive and 7 % 7/ for some a, then 7' is contractive as well. |

Corollary
If 7 is contractive, then 7] # 0

v

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 21/36

Outline

o Expressive power of global types (by examples)

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Example 2: brokering protocol

sd Brokering J
‘ s: Seller ‘ ‘b: Broker‘
I I
| tell(item) | |
i = |
! loop ! tell(offer) !
‘ ‘ tell(counter) ‘
| e
| | |
| parallel) | |
I tell(final) I |
I e — o
| | tell(result) |
=
| | |
T T T
I I I
Brokering item: (Negotiation + End)
Negotiation = offer:counter: (Negotiation + End)

End

D. Ancona (Univ. of Genova)

final:\ | result:A\

Global Types for Multi-Agent Systems

ICTCS12

23/36

Example 3: extended ping-pong protocol

sd ExtPing-Pong)

alice: master bob: slave

Iood l

' “n” can change at
1"| any external loop,
but inside one loop

the number of “b”

sent by bob must
be the same as the

number of “a” sent

by alice

\

\

loop [n} tell(ping) >‘

‘ \

\

Mli[’l]) tel(pong)

| \

| \

Loop = PingPong - Loop

PingPong = ping: (pong:A +

D. Ancona (Univ. of Genova)

(PingPong - pong:A))

Global Types for Multi-Agent Systems

ICTCS12

24/36

Example 4: alternating bit protocol

Proposed by Deniélou and Yoshida (ESOP 2012)
Infinite sequences of the following sending action types:

@ Alice sends msg1l to Bob
@ Alice sends msg2 to Bob
@ Bob sends ack1 to Alice
@ Bob sends ack?2 to Alice
Constraints (for all n > 0):
® msglp <msgZp <msglpyg
@ msglp <acklp <msglpyq
@ msg2p <ack2p <msg2pyq
Where a, denotes the n-th occurrence of a in the sequence

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 25/36

A global type for the alternating bit protocol

AltBitOne = msgl:M2
AltBitTwo = msg2:Ml

M2 = (((msg2

:A) | (ackl:)\)) - M1l) +
:ack2:\) | (ackl:\))
:A) | (ack2:)\)) - M2) +
cackl:\) | (ack2:)\))

- AltBitOne)

- AltBitTwo)

Problems:

@ quite complex type, not intuitive
@ the complexity of the type grows exponentially with the number of

messages

D. Ancona (Univ. of Genova)

Global Types for Multi-Agent Systems

ICTCS12

W

26 /36

Outline

e An extension to enhance the expressive power (not in the paper)

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Global types and constraints

Intuition: for every correct sequence s
@ srestricted to msgl and ack1 is M1A1
@ srestricted to msg2 and ack2 is M2A2
@ srestricted to msgl and msg2 is M1M2

msgl:ackl:MI1A1
msg2:ack2:M2A2
msgl:msg2:MIM2

But neither
M1A1l | M2A2
nor

M1A1l | M2A2 | MI1M2
are correct, since the shuffle is unconstrained

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 28/36

Idea

@ Shuffle with a synchronization mechanism

@ Producer sending action type: " must be synchronized with n
consumer types (n > 0)

@ Consumer sending action type: «

An unconstrained global type is a particular case of constrained global
type where all sending action types have shape o°

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 29/36

Extended transition rules

@ M, = o, 72
@ input ny: sending action types to be consumed
@ output n,: sending action types left to be consumed

@ top-level transition: 0,7y > 0, 7»

New rules:
(S"«Q-Pmd)—a aca (seg-cons1) 2 n>0
0,7 > n,7 not>n—1,7 <
(seq-cons2) 2 n>0 (empty)T >0
n,a:r = nar 2 nx>n\

a / a /
m,m™ — N2, 7y N2,T2 — N3,T,

(fork-sync-1) ny>0

a
M, Ty|T2 = N, 7|7}

a / a /
m,m2 — N2, 75 N2, 74 — N3, T4

(fork-sync-r) n,>0

a
M, 7|2 = N3, 74|75

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 30/36

Extended transition rules

Generalization of the previous rules:

a /
Mm,m — N2, T4

(choice-1) a
M, T + T2 = N2, 7y

a
ny, 1 — 0,7}
(fOI'k -1)

m, ’7—2 i 07 T‘”TZ

a /
m, ™ — N2, Ty

(cat-1) 2 p
m,m -T2 — N2, Ty - T2

a /
Mn,m — N2, T

(choice-r) 2
Ny, T + T2 = N2, 75

a
ny,m» = 0,7
(fork-r)

ny, |2 3 0,74|74

a /
m,m2 — N2, 7y
(cat-r) 2 p e(r1)
m,m -T2 — N2, 7,

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12

31/36

Alternating bit protocol (revisited)

Dimension 2

AltBit2 = MI1Al | M2A2 | MI1M2
M1Al = msg11:ack10:MlAl

M2A2 = msg21:ack20:M2A2

MIM2 = msgl:msg2:M1M2

Dimension 3

AltBit3 = M1Al | M2A2 | M3A3 | MI1M2M3
M1Al = msg11:ack10:MlA1

M2A2 = msg21:ack20:M2A2

M3A3 = msg31:ack30:M3A3

MIM2M3 = msgl:msg2:msg3:MIM2M3

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 32/36

Outline

e Conclusion and future work

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

Conclusion

@ global types as Prolog regular terms

@ dynamic checking of protocol conformance
@ formalization

@ extension to “constrained shuffle”

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems

ICTCS12

W

34/36

Future work

@ in depth comparison with other formalisms for protocol
specification

@ relations with w-automata

@ projecting global types

@ from dynamic to static checking of protocol conformance

W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 35/36

Thank you for your attention...

...questions?

| - ‘

5a ¢
Vg
: W

D. Ancona (Univ. of Genova) Global Types for Multi-Agent Systems ICTCS12 36/36

	Background on multi-agent systems
	Previous work (Declarative Agent Languages and Technologies - DALT 2012, Ancona, Drossopoulou, Mascardi)
	Global types: formalization
	Expressive power of global types (by examples)
	An extension to enhance the expressive power (not in the paper)
	Conclusion and future work

