
Automata and Logic for Floyd Languages

Violetta Lonati1, Dino Mandrioli2, Matteo Pradella2

1 DSI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@dsi.unimi.it

2 DEI - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{dino.mandrioli, matteo.pradella}@polimi.it

Floyd languages (FL), as we renamed Operator Precedence Languages after their in-
ventor, were originally introduced to support deterministic parsing of programming and
other artificial languages [1]; then, interest in them decayed for several decades, prob-
ably due to the advent of more expressive grammars, such as LR ones [2] which also
allow for efficient deterministic parsing.

In another context Visual Pushdown Languages (VPL) have been introduced and in-
vestigated [3] with the main motivation to extend to them the same or similar automatic
analysis techniques -noticeably, model checking- that have been so successful for reg-
ular languages. Recently we discovered that VPL are a proper subclass of FL, which in
turn enjoy the same properties that make regular and VP languages amenable to extend
to them typical model checking techniques; in fact, to the best of our knowledge, FL
are the largest family closed w.r.t. Boolean operation, concatenation, Kleene * and other
classical operations [4]. Another relevant feature of FL is their “locality property”, i.e.,
the fact that partial strings can be parsed independently of the context in which they oc-
cur within a whole string. This enables more effective parallel and incremental parsing
techniques than for other deterministic languages.

Originally, Floyd languages were defined in terms of grammars. In this work we
present an appropriate automata family that recognizes exactly FL [5], together with a
complete characterization of FL in terms of a suitable Monadic Second-Order (MSO)
logic [6]. In this way, as well as with regular and VP languages, one can, for in-
stance, state a language property by means of a MSO formula, then automatically verify
whether a given FA accepts a language that enjoys that property.

Operator precedence alphabet and chains

Let Σ = {a1, . . . , an} be an alphabet. The empty string is denoted ε. We use a special
symbol # not in Σ to mark the beginning and the end of any string. This is consistent
with the typical operator parsing technique that requires the look-back and look-ahead
of one character to determine the next parsing action [2].

An operator precedence matrix (OPM) M over an alphabet Σ is a partial function
(Σ ∪ {#})2 → {l,�,m}, that with each ordered pair (a, b) associates the OP relation Ma,b

holding between a and b. We call the pair (Σ,M) an operator precedence alphabet (OP).
Relations l,�,m, are named yields precedence, equal in precedence, takes precedence,
respectively. By convention, the initial # can only yield precedence, and other symbols
can only take precedence on the ending #.

2 Violetta Lonati, Dino Mandrioli, Matteo Pradella

If Ma,b = ◦, where ◦ ∈ {l,�,m}, we write a◦b. For u, v ∈ Σ∗ we write u◦v if u = xa and
v = by with a ◦ b. M is complete if Ma,b is defined for every a and b in Σ. Moreover in
the following we assume that M is �-acyclic, which means that c1 � c2 � . . . � ck � c1
does not hold for any c1, c2, . . . ck ∈ Σ, k ≥ 1. See [7,4,5] for a discussion on this
hypothesis.

Given an OP alphabet, the OPM M assigns a structure to strings in Σ∗, i.e., a string
can be uniquely associated with a tree.

A simple chain is a string c0c1c2 . . . c`c`+1, written as c0 [c1c2 . . . c`]c`+1 , such that:
c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . `, and c0 l c1 � c2 . . . c`−1 � c` m c`+1.
A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where c0 [c1c2 . . . c`]c`+1 is a sim-
ple chain, and si ∈ Σ

∗ is the empty string or is such that ci [si]ci+1 is a chain (simple
or composed), for every i = 0, 1, . . . , `. Such a composed chain will be written as
c0 [s0c1s1c2 . . . c`s`]c`+1 . A string s ∈ Σ∗ is compatible with the OPM M if #[s]# is a
chain.

Floyd automata

Floyd automata are stack-based automata perfectly carved on the generation mechanism
of the traditional Floyd grammars [1]. Not surprisingly they inherit some features of
VPA (mainly a clear separation between push and pop operations) and maintain some
typical behavior of shift-reduce parsing algorithms [2]; however, they also exhibit some
distinguishing features.

A nondeterministic Floyd automaton (FA) is a tuple A = 〈Σ,M,Q, I, F, δ〉 where:
(Σ,M) is a precedence alphabet, Q is a set of states (disjoint from Σ), I, F ⊆ Q are sets
of initial and final states, respectively, δ : Q × (Σ ∪ Q) → 2Q is the transition function.
The transition function is the union of two disjoint functions: δpush : Q × Σ → 2Q and
δflush : Q × Q→ 2Q.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are
called marked symbols. Let Γ = (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q],
[a′q], or [# q], respectively. We set smb([a q]) = smb([a′q]) = a, smb([# q]) = #, and
st([a q]) = st([a′q]) = st([# q]) = q.

A configuration of a FA is any pair C = 〈B1B2 . . . Bn, a1a2 . . . am〉, where Bi ∈ Γ
and ai ∈ Σ ∪ {#}. The first component represents the contents of the stack, while the
second component is the part of input still to be read.

A computation is a finite sequence of moves C ` C1; there are three kinds of moves,
depending on the precedence relation between smb(Bn) and a1:

(push) if smb(Bn) � a1 then C1 = 〈B1 . . . Bn[a1 q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(mark) if smb(Bn)la1 then C1 = 〈B1 . . . Bn[a1

′q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(flush) if smb(Bn) m a1 then let i be the greatest index such that smb(Bi) ∈ Σ′ and
C1 = 〈B1 . . . Bi−2[smb(Bi−1) q], a1a2 . . . am〉, with q ∈ δ f lush(st(Bn), st(Bi−1)).

Push and mark moves both push the input symbol on the top of the stack, together
with the new state computed by δpush; such moves differ only in the marking of the
symbol on top of the stack. The flush move is more complex: the symbols on the top of
the stack are removed until the first marked symbol (included), and the state of the next

Automata and Logic for Floyd Languages 3

symbol below them in the stack is updated by δ f lush according to the pair of states that
delimit the portion of the stack to be removed; notice that in this move the input symbol
is not consumed and it remains available for the following move.

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =

{
x | 〈[# qI], x#〉

∗
` 〈[# qF], #〉, qI ∈ I, qF ∈ F

}
.

The chains fully determine the structure of the parsing of any automaton over
(Σ,M). Indeed, if the automaton performs the computation 〈[a q0], sb〉

∗
` 〈[a q], b〉,

then a[s]b is necessarily a chain over (Σ,M) and the first move in the above compu-
tation is a mark from state q0, whereas the last one is a flush towards state q labelled
by q0. Such a computation corresponds to the parsing by the automaton of the string
s0c1 . . . c`s` within the context a,b; this context contains all information needed to build
the subtree whose frontier is that string. This is a distinguishing feature of FL, not shared
by other deterministic languages: we call it the locality principle of Floyd languages.

In other terms, given an OP alphabet, the OPM M assigns a structure to any string
in Σ∗ compatible with M; a FA defined on the OP alphabet selects an appropriate subset
within such a “universe”. In some sense this property is yet another variation of the
fundamental Chomsky-Shützenberger theorem.

Logic characterization of Floyd languages

Our characterization of FL in terms of a suitable Monadic Second Order (MSO) logic
follows the approach originally proposed bu Büchi for regular languages and subse-
quently extended by Alur and Madhusudan for VPL. The essence of the approach con-
sists in defining language properties in terms of relations between the positions of char-
acters in the strings: first order variables are used to denote positions whereas second
order ones denote subsets of positions; then, suitable constructions build an automaton
from a given formula and conversely, in such a way that formula and corresponding
automaton define the same language. The extension designed by [3] introduced a new
basic binary predicate { in the syntax of the MSO logic, x { y representing the fact
that in positions x and y two matching parentheses –named call and return, respectively
in their terminology– are located. In the case of FL, however, we have to face new
problems.

Both finite state automata and VPA are real-time machines, i.e., they read one input
character at every move; this is not the case with more general machines such as FA,
which do not advance the input head when performing flush transitions, and may also
apply many flush transitions before the next push or mark which are the transitions
that consume input. As a consequence, whereas in the logic characterization of regular
and VP languages any first order variable can belong to only one second order variable
representing an automaton state, in this case –when the automaton performs a flush–
the same position may correspond to different states and therefore belong to different
second-order variables.

In VPL the { relation is one-to-one, since any call matches with only one return,
if any, and conversely (with the exception of unmatched calls and returns, where many

4 Violetta Lonati, Dino Mandrioli, Matteo Pradella

call positions can be in relation with +infinite and symmetrically). In FL, instead the
same position y can be “paired” with different positions x in correspondence of many
flush transitions with no push/mark in between, as it happens for instance when pars-
ing a derivation such as A

∗
⇒ αkA, consisting of k immediate derivations A ⇒ αA;

symmetrically the same position x can be paired with many positions y.
Consider an OP alphabet (Σ,M). We introduce a relation over positions of charac-

ters in any word s ∈ Σ∗. For 0 ≤ x < y ≤ |s| + 1, we say that (x, y) is a chain boundary
iff there exists a sub-string of #s# which is a chain a[r]b, such that a is in position x and
b is in position y. In general if (x, y) is a chain boundary, then y > x + 1, and a position
x may be in such a relation with more than one position and vice versa. Moreover, if s
is compatible with M, then (0, |s| + 1) is a chain boundary.

Let us define a countable infinite set of first-order variables x, y, . . . and a countable
infinite set of monadic second-order (set) variables X,Y, The MSOΣ,M (monadic
second-order logic over (Σ,M)) is defined by the following syntax:

ϕ := a(x) | x ∈ X | x ≤ y | xy y | x = y + 1 | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables and X is a set variable.
MSOΣ,M formulae are interpreted over (Σ,M) strings and the positions of their char-

acters in the following natural way: first-order variables are interpreted over positions
of the string; second-order variables are interpreted over sets of positions; a(x) is true
iff the character in position x is a; xy y is true iff (x, y) is a chain boundary; the other
logical symbols have the usual meaning.

A sentence is a formula without free variables. The language of all strings s ∈ Σ∗

such that #s# |= ϕ is denoted by L(ϕ) = {s ∈ Σ∗ | #s# |= ϕ}, where |= is the standard
satisfaction relation.

This characterization completes a research path that began more than four decades
ago and was resumed only recently with new -and old- goals. FL enjoy most of the
nice properties that made regular languages highly appreciated and applied to achieve
decidability and, therefore, automatic analysis techniques.

References

1. Floyd, R.W.: Syntactic analysis and operator precedence. Journ. ACM 10 (1963) 316–333
2. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
3. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56 (2009)
4. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property.

Journal of Computer and System Science (2012) to appear.
5. Lonati, V., Mandrioli, D., Pradella, M.: Precedence automata and languages. In Kulikov,

A.S., Vereshchagin, N.K., eds.: CSR. Volume 6651 of Lecture Notes in Computer Science.,
Springer (2011) 291–304

6. Lonati, V., Mandrioli, D., Pradella, M.: Logic characterization of Floyd languages. CoRR-
arXiv 1204.4639 (2012) http://arxiv.org/abs/1204.4639.

7. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence
languages. Information and Control 37 (1978) 115–133

