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1 Introduction

The perfect phylogeny is one of the most investigated models in different areas of computational
biology. This model derives from a restriction of the parsimony methods used to reconstruct the
evolution of species (taxa) characterized by a set of characters that are gained and/or lost during
the evolution. In this paper we focus on the binary characters that can take only the states 0
or 1, usually interpreted as the presence or absence of the attribute in the taxa. Restrictions on
the type of changes from zero to one and vice versa lead to a variety of specific models [4]. The
most restrictive parsimony assumption is perfect phylogeny: a tree in which each character state
can change its state from 0 to 1 at most once. The algorithmic solution of the Perfect Phylogeny
model has been investigated in [5], where a well known characterization of matrices admitting a
perfect phylogeny4 and a linear time algorithm are provided. The perfect phylogeny model has
been successfully applied in the context of haplotype inference [6] and very efficient polynomial
time solutions to this problem have been proposed, including linear-time algorithms [3], [10], [1].
However, this model is quite restrictive to explain the biological complexity of real data, where
homoplasy events (such as recurrent mutations or back mutations) are present. Thus a central
goal in this model is to extend its applicability, while retaining the computational efficiency where
possible.

Following this research direction, in this paper we address the problem of constructing a perfect-
phylogeny under the assumption that only a special type of back mutation may occur in the tree:
a character may change state only twice in the tree from 0 to 1 and from 1 to 0. These characters
have already been considered in the literature and called persistent by T. Przytycka [9] in a general
framework of tree inference.

We consider a binary matrix M of size n ×m that has columns associated with the set C =
{c1, . . . , cm} of characters and rows associated with the set S = {s1, . . . , sn} of species, then
M [i, j] = 1 if and only if species si has character cj , otherwise M [i, j] = 0. The gain of a character
c in a phylogenetic tree is usually represented by an edge labelled by the character c. In order to
model the presence of persistent characters, the loss of a character c in the tree is represented by
an edge that is labelled by the negated character, denoted by c̄. Formally, we define the persistent
perfect phylogeny model as follows.

Persistent Perfect Phylogeny Let M be a binary matrix of size n ×m. Then a persistent
perfect phylogeny, in short p-pp tree for M , is a rooted tree T that satisfies the following properties:

1. each node x of T is labelled by a vector lx of length m. The root of T is labelled by a vector
of all zeros, while for each node x of T the value lx[j] represents the state, 0 or 1, of character
cj in tree T . Each row of M labels exactly one leaf of T ;

2. for each character cj there are at most two edges e = (x, y) and e′ = (u, v) such that e, e′

occur along the same path from the root to a leaf of T ; if e is closer to the root than e′, then
the edge e is labelled cj , while edge e′ is labelled c̄j ;

4 A binary matrix M admits a rooted perfect phylogeny if and only if it does not contain a pair of columns
and three rows inducing the configurations (0, 1), (1, 0) and (1, 1), also known as forbidden matrix.



Let us state the main problem investigated in the paper.
The Persistent Perfect Phylogeny problem (P-PP): Given a binary matrix M , returns

a p-pp tree for M if such a tree exists.
We say that two positive characters c, c′ of matrix M are in conflict in matrix M , if and only

if the pair of columns c, c′ of M induces the four gametes (0, 1), (1, 1), (1, 0) and (0, 0). Then the
conflict graph5 associated with a binary matrix M is the undirected graph Gc = (C,E ⊆ C × C)
where a pair (u, v) ∈ E if and only if u, v are in conflict in matrix M . Notice that a conflict
graph with no edges (called e-empty) does not necessarily imply the existence of a rooted perfect
phylogeny, because of the occurrence of the forbidden matrix with only the three configurations
(1, 1), (1, 0) and (1, 0). However, by allowing a character to be persistent, the matrix admits a
rooted persistent perfect phylogeny.

In this paper we propose a graph-based solution of the problem of the reconstruction of the
persistent perfect phylogeny (in short P-PP problem) that is obtained by restating the problem as
a variant of the Incomplete Directed Perfect Phylogeny [8], called Incomplete Perfect Phylogeny
with Persistent Completion (IP-PP problem). We show a polynomial-time algorithm that finds a
solution for the input matrices described by an e-empty conflict-graph. Then we use it to develop
an optimized version of the exact algorithm, that has been presented in [2] and having a a worst
time complexity that is polynomial in the number n of rows of the matrix and exponential in
the number m of characters. An experimental analysis shows that the new optimized version
outperforms the previously proposed algorithm and has a wider applicability, since it can solve all
input matrices within fixed time bounds, while the previous algorithm was not able to finish on
some of them.

2 Solving the Persistent Perfect Phylogeny problem

Let M be a binary n×m matrix which is an instance of the P-PP problem. The extended matrix
associated with M is a matrix Me of size n× 2m over alphabet {0, 1, ?} which is obtained by
replacing each column c of M by a pair of columns (c, c̄), where c is the positive character, while
c̄ is the negated character, moreover for each row s of M , it holds:

if M [s, c] = 1, then Me[s, c] = 1 and Me[s, c̄] = 0,
if M [s, c] = 0, then Me[s, c] = ? and Me[s, c̄] = ?.
Informally, the assignment of the pair (?, ?) in a species row s for the pair of columns (c,c̄)

means that character c could be persistent in species s, i.e. it is gained and then lost. On the
contrary, the pair (1, 0) assigned in a species row s for the pair (c,c̄), means that character c is
only gained by the species s. A completion of a character c of matrix Me is obtained by solving
the pair (?, ?) given in the pair (c, c̄) by the value (0, 0) or (1, 1). A completion of matrix Me

is a completion of all characters of Me, while a partial completion of Me is a completion of zero
or more characters of Me. We introduce below a problem to which we reduce P-PP, as shown in
Theorem 1.

Incomplete Perfect Phylogeny with Persistent Completion Problem (IP-PP): given
an extended matrix Me over {0, 1, ?} return a completion M ′ of Me such that M ′ admits a pp
tree, if it exists.

Thus we state the first result of the paper.

Theorem 1. Let M be a binary matrix and Me the extended matrix associated with M . Then M
admits a p-pp tree if and only if there exists a completion of Me admitting a pp tree.

The notion of red-black graph GRB for a matrix M has been introduced to find a completion of
a matrix Me. It consists of the edge colored graph (V,E) where V = C∪S, given C = {c1, · · · , cm}
and S = {s1, · · · , sn} the set of positive characters and species of matrix Me, while E is defined
as follows: (s, c) ∈ E is a black edge if and only if Me[s, c] = 1 and Me[s, c̄] = 0.

Realization of a character c and its canonical completion
Let C(c) be the connected component of graph GRB containing node c. The realization of

character c in graph GRB consists of:

5 The conflict graph is a well known concept that has been used several times in the framework of the
perfect phylogeny is a graph representation of the four gametes (0, 1), (1, 1), (1, 0) and (0, 0).
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1. adding red edges connecting character c to all species nodes s that are in C(c) and such that
(c, s) is not an edge of GRB ,

2. removing all black edges (c, s) in graph GRB . Then c is labelled active.
3. if an active character c′ is connected by red edges to all species of that are in C(c′), then its

outgoing red edges are deleted from the graph and c is labelled c′ free.

The realization of a character c is associated with a canonical completion of character c in
matrix Me that is defined by completing each pair (?, ?) occurring in the pair (c,c̄) as follows: the
pair (?, ?) is completed by (1, 1) in every species s that is in the connected component C(c) of graph
GRB , (s is connected with c by a red edge) while value (0, 0) is assigned in the remaining rows.
We call e-empty a red-black graph without edges. Since we are interested in computing canonical
completions of Me that admit a pp tree, only canonical completions that are obtained by the
realization of special sequences of characters of the red-black graph are considered, as defined
below.

Definition 1. Given a graph GRB for an extended matrix Me, a successful reduction of GRB is
an ordering r =< ci1 , · · · , cim > of the set of all positive characters of Me such that the consecutive
realization of each character in r leaves an e-empty red-black graph.

In [2] we show that finding a solution to an instance of the IP-PP problem is equivalent to
computing the existence of a successful reduction for the red-black graph for the input matrix.
Furthermore by the Theorem 1 a solution to the IP-PP instance Me is equivalent to a solution to
the P-PP instance M .

Theorem 2. Let Me be an extended matrix. Then Me admits a perfect phylogeny, if and only if
there exists a successful reduction of the graph GRB for Me.

We propose an algorithm, called Decide-pp-opt, for the P-PP problem that is based on
Theorems 1 and 2. It builds a decision tree that explores all permutations of the set C of characters
of Me in order to find one that is a successful reduction, if it exists.

The following result is a consequence of two technical Lemmas that are omitted for lack of
space.

Theorem 3. Let M be a binary matrix that has an e-empty conflict graph. Then matrix M admits
a persistent perfect phylogeny and there exists a polynomial time algorithm to build the p-pp tree
for M .

We give a polynomial time algorithm, in the size of the input matrix M , to find a successful
reduction of graph GRB , thus showing that a p-pp tree for M always exists. Given c, c′ columns
of M , then c < c′ if and only if for each species s of M , it holds that M [s, c] ≤ M [s, c′]. Then
given M a binary matrix, the partial order graph for M is the partial order P obtained by ordering
columns of M under the < relation.

The algorithm constructs the partial order graph P for M . Then it iterates the following step
to build a successful reduction r: - add to sequence r all element in the set CM consisting of the
maximal ones in P . Remove characters CM from P .

Furthermore we propose a optimized version of the exact algorithm presented in [2] that uses
the polynomial time algorithm for an e-empty conflict graph.

Algorithm Decide-pp-opt(M , M ′, x, T )
Input: a binary matrix M of size n×m, a partial depth-first visit tree T of the decision tree T and
a leaf node x of T , a partial completion M ′ of the extend matrix Me obtained by the realization
of the characters labelling a path π from r to node x of the tree T ;
Output: the tree T extended with the depth-first visit of T from node x. The procedure eventually
outputs a successful reduction r or fails to find such a successful reduction.

- Step 1: if the incident edge to node x is labelled c, then realize c in GRB and complete the
pair of columns (c, c′) in M ′. If the matrix M ′ has a forbidden matrix, then label x as a fail
node.
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- Step 2: compute the conflict graph Gc for the matrix M updated after the realization of the
characters along the path π from the root r to node x (i.e. M is obtained after eliminating
the rows that correspond to species-nodes that are singletons in GRB),

- Step 3: if the conflict graph Gc is e-empty, then apply the polynomial-time algorithm for an
empty conflict-graph and return a successful reduction. Else for each node xi that is a child
of node x in tree T and is labelled by a non-active character in GRB , apply Decide-pp-opt(M ,
M ′, xi, T ∪ {xi}).

The algorithm Decide-pp-opt has been implemented and tested over simulated data produced
by the tool ms by Hudson [7]. We have implemented the algorithm in C++ and the experiments
have been run on a standard Windows workstation with 4 GB of main memory.

Table 1 reports the computation time to solve sets of 50 matrices for each dimension (50, 15),
(100, 15), (200, 15), and (500, 15) with a recombination rate 1 over 15. The sets contain only
matrices that are solved within 5 minutes. Another experiment has been done with 10 matrices
of the same size 50 × 15 and different number of edges in the conflict graph. The average time
was 0.015, 0.031 and 0.051, respectively for the case of 1, 5 and 10 conflicts. Clearly, the number
of unsolved matrices increases with the size of the input matrices but also with the number of
conflicts that are present in the conflict graph. In order to test the performance of the algorithm
for large matrices in terms of number of species we have processed a matrix of size 1000× 15 with
a conflict graph having 9 conflicts (edges). It took 35.5 seconds to find the solution to the matrix.
We also compared the execution times of the exact algorithm and the optimized algorithm on sets
of matrices with fixed number of columns and different numbers of rows. The Decide-pp-opt
algorithm is able to find a solution for all matrices in contrast to the Decide-pp algorithm that
in some cases takes more than 10 minutes to find a solution for a single matrix.

nxm no P-PPH tot conflicts average conflicts solved matrices total time in s average time in s
algorithm opt. algorithm algorithm opt. algorithm algorithm opt. algorithm

50x15 6 236 4.72 47 50 89.12 32.32 1.90 0.65
100x15 4 175 3.5 48 50 436.02 194.63 9.08 3.89
200x15 3 147 2.94 48 50 1583.50 43.21 32.99 0.86
500x15 7 219 4.38 44 50 888.59 889.43 20.20 17.79

Table 1. The table has entries to specify the average time to solve a single matrix (in seconds shortened
as s), the number of matrices that do not admit a p-pp tree, the total number of conflicts, measured as
the number of edges in the graph Gc of the matrices of each set, and the average number of conflicts. Each
considered matrix has a conflict graph Gc that consists of a single non trivial component.
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