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Introduction Implementing more than a trivial application in JavaScript (or any other dynamically typed
language) can cause problems due to the absence of type checking. Such problems can lead to unexpected
application behaviour followed by onerous debugging. Although dynamic type checking and automatic type
casting shorten the programming time, they introduce serious difficulties in the maintenance of medium to
large applications. This is the reason why dynamically typed languages are rarely used for more than just
prototyping and quick scripting.
We propose to deal with these problems using dynamically typed languages as “assembly languages” to
which we translate the source code from F# which is statically typed. In this way, we take advantage of the
F# type checker and type inference system, as well as other F# constructs and paradigms such as pattern
matching, classes, discriminated unions, namespaces, etc. There are also the advantages of using an IDE
such as Microsoft Visual Studio (code organization, debugging tools, IntelliSense, etc.).
To provide translation to different target languages we introduce an intermediate language. This is useful, for
instance, for translating to Python that does not have complete support for functions as first class concept,
or for translating to JavaScript, using or not libraries such as jQuery.
The paper is organized as follows. We first introduce the syntax of the core of the intermediate language.
Then, we present the translation from F# to this intermediate language, and from the intermediate language to
both JavaScript and Python. We do this via some examples that highlight the features of the intermediate
language and the differences between the two target languages. Then, we briefly discuss correctness, and
implementation. Finally, we compare our approach with related work, and discuss plans for future work.

Intermediate language The intermediate language is higher level than most intermediate languages. The
syntax of the language is presented in Fig.1. There are three syntactic categories: expressions, e, statements,
st , and sequence statements, s, which are sequences of statements returning a value. A program is a sequence
statement. Although in F# everything is an expression, we introduce a distinction between expressions and
statements as many target languages do. This facilitates the translation process and prevents some errors
while building the intermediate abstract syntax tree, see [3] for a similar choice. The construct of the language
which is most useful in the translation is stm2exp, which is a sequence statement, s, whose free mutable
variables are a subset of {u1, . . . , un}; stm2exp is a value (like the lambda abstraction), and therefore, may
be passed around. Its type, 〈u1:t1, . . . , un:tn〉t says that in an environment in which the mutable variables
ui have type ti (1 ≤ i ≤ n), then s has type t . The construct exc e evaluates the expression e, which is
supposed to be a stm2exp in the current store, dynamically binding its free mutable variables in the execution
environment. The use of the construct will be explained when presenting the translation.

s :: = return e | st ; s sequence statements
st :: = u:=e | let x :t=e | let! u:t=e | return e | if e then s1 else s2 statements
e :: = x | n | tr | fls | e1+e2 | fun x :t->s | e1 e2 | stm2exp(s, {u1:t1, . . . , un:tn}) | (int)e | (bool)e | exc e expressions
t :: = int | bool | t1 → t2 | 〈u1:t1, . . . , un:tn〉t types
v :: = n | tr | fls | fun x :t->s | stm2exp(s, {u1:t1, . . . , un:tn}) values

Fig. 1. Syntax of core intermediate language
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Translation by examples Many F# constructs can be directly mapped to JavaScript (or Python), but
when this is not the case we obtain a semantically equivalent behaviour by using the primitives offered by
the target language. E.g., in F# a sequence of expressions is itself an expression, while in JavaScript and
Python it is a statement. Suppose we want to translate a piece of code that calculates a fibonacci number,
binds the result to a name and also stores the information if the result is even or odd. On the left of Fig. 2
is the F# code. As we can see, on the right-hand-side side of let x= we have a sequence of expressions: the

let mutable even = false
let x =

let rec fib x =
if x < 3 then 1
else fib(x - 1) + fib(x - 2)

let temp = fib 7
even <- (temp % 2 = 0)
temp

x

let y = stm2exp(
let fib = fun x:int ->

if x < 3 then return 1
else return (fib (x-1) + fib (x-2));

let temp = fib 7;
even := temp % 2 = 0;
return temp;,

{even:bool});
let! even = false;
let x = exc y
return x;

Fig. 2. Translation of F# sequence of expressions in the intermediate language

definition of the function fib followed by the definition of temp, etc. This sequence is, in F#, an expression.
On the right side of Fig. 2 is the translation into the intermediate code. The sequence of statements is
translated in a stm2exp expression whose first component is the sequence of statements, and the second the
set of free mutable variables occurring in such statements with their type: in this case the variable even of
type bool, and bound to the variable y. The variable x is then bound to the exc expression applied to y (to
obtain the result that we would have by evaluating the sequence of statements in the current environment).
Assume that, the F# code was mapped to JavaScript literally, we would obtain the program on the left side
of Fig. 3. This program is syntactically wrong, since on the right-hand-side of an assignment we must have

var even = false;
var x =

var fib = function (x) {
if (x < 3)

return 1;
else

return fib(x - 1) + fib(x - 2);
};
var temp = fib(7);
even = (temp % 2) == 0;
temp;

return x;

(function() {
var even = false;
var x = (function () {

var fib = function (x) {
if (x < 3)

return 1;
else

return fib(x - 1) + fib(x - 2);
};
var temp = fib(7);
even = (temp % 2) == 0;
return temp;

})();
return x;

})();

Fig. 3. Wrong and Correct JavaScript translations

an expression, while a sequence of expressions is, in JavaScript, a statement. To transform a sequence of
statements in an expression, in JavaScript, we wrap the sequence into a function, and to execute it we call
the function, i.e., we use a JavaScript closures and application. Also, the whole program is wrapped into an
entry point function. In this way, the code on the right side of Fig. 3 is correct.
Unfortunately, the same cannot be done in Python as its support for closures is partial. So we have to define
a temporary function, say temp1, in the global scope and to execute it we have to call temp1 in the place
where the original sequence should be. However, variables such as even will be out of the scope of their
definition, and this would make the translation wrong. To obtain a behaviour semantically equivalent, we
have to pass to temp1 the variable even, by reference, since it may be modified in the body of temp. Note
that, this problem is not present in JavaScript where the closure is defined and called in the scope of even.
Another problem in Python is related to lambdas, whose body must be an expression (not a sequence). So
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we define the function temp2 whose body contains the statements that should be placed where an expression
is expected. In Fig. 4 we can see the translation of the F# code into Python. The class ByRef is used to wrap

def temp1(even):
def temp2(even, fib, x):

if (x < 3):
return 1

else:
return fib(x - 1) + fib(x - 2)

fib = lambda x: temp2(even, fib, x)
temp = fib(7)
even.value = ((temp % 2) == 0)
return temp

def __main__():
even = false;
wrapper1 = ByRef(even)
x = temp1(wrapper1)
even = wrapper1.value
return x

__main__();

Fig. 4. Translation in Python

the mutable variable even to obtain a parameter called by reference. The Python code generator inserts the
needed wrapping and unwrapping before and after the call of temp1, and in the body of temp1. Going back
to our intermediate language, we use the construct stm2exp to provide the information needed to produce
both translations, recording the information on the free mutable variables, needed for any language not
supporting closures. We do not record free immutable variables, as they can be substituted with their values.

Dynamic Type checking JavaScript, and many dynamically typed languages, lack a rigorous type system.
On the contrary, in F# if we write a function that adds two integers, see left side of Fig. 5, even though we do
not specify type information, the interpreter infers the type shown after the function definition. Therefore,
there is no way of calling add with arguments that are not of type integer. However, if our translation in the
intermediate code would produce a function whose body was simply x+y, which in turn could be translated
in the corresponding expression in both JavaScript and Python, the target JavaScript function could be
called, e.g., add("foo")(1) and obtain the string "foo1" which is not what we wanted. In Python the
situation would be better, in the sense that we cannot call add on a string and an integer, however, due to
overloading we can call it on 2 floating points obtaining a floating point. To prevent this, the translation in the

let add x y = x + y

val add : int -> int -> int

let add = fun x:int ->
return fun y:int ->

return (int)x+(int)y;

Fig. 5. F# code and the corresponding intermediate representation with type casting

intermediate language, see right side of Fig. 5, insert type casting on the occurrences of function parameters.
This is translated into dynamic type checking in JavaScript and Python as is shown in Fig. 6, where the
function toInt tries to convert the argument we pass it to an integer, and if it fails, raises an exception. Our

var add = function (x) {
return function(y) {

return toInt(x) + toInt(y);
}

}

def temp1(x, y):
return (int(x) + int(y))

def add(x):
return lambda y: temp1(x, y)

Fig. 6. JavaScript and Python version with type casting

intermediate language supports other features such as namespacing, classes, pattern matching, discriminated
unions, etc. Some of this features have poor or no support at all in JavaScript or Python although semantically
equivalent behaviour can be achieved through other language constructs.

Full abstraction of the translations We have defined an operational semantics for the intermediate
language, IL, and a type system enforcing the property that well typed programs evaluated in a store that
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agrees with their definition environment do not get stuck. Moreover, before the conference we plan to prove
the full abstraction of the translations. That is, (1) formalize a fragment of F#, FSc, a core Javascript, JSc,
and a core Python, PYc, as we have done for the intermediate language; (2) define the translations from FSc

to IL, and from IL to JSc and PYc; (3) prove that the translations preserve the operational semantics (and
for the one from FSc to IL also the typing) of the relative languages.

Implementation The compiler is implemented in F# and is based on two metaprogramming features offered
by the .net platform: quotations and reflection. These mechanisms allow one to extract code and type
information during runtime, reason about it and, in our case, are used to build an intermediate language
abstract syntax tree from which the target code is generated.

Comparisons and future work Similar projects exist and are based on similar translation techniques,
although, as far as we know, we are the first to introduce an intermediate language allowing to translate to
many target languages. Pit, see [4], is an open source F# to JavaScript compiler. It supports many F# features
(at the time of this writing it is at version 0.2) and is very well documented. It supports only translation
to JavaScript. Websharper, see [5], is a professional web and mobile development framework. As of version
2.4 an open source license is available. It is a very rich framework offering extensions for ExtJs, jQuery,
Google Maps, WebGL and many more. Again it supports only JavaScript. F# Web Tools is an open source
tool whose main objective is not the translation to JavaScript, instead, it is trying to solve the difficulties
of web programming: “the heterogeneous nature of execution, the discontinuity between client and server
parts of execution and the lack of type-checked execution on the client side”, see [8]. It does so by using
meta-programming and monadic syntax. One of it features is translation to JavaScript. Finally, a translation
between Ocaml byte code and JavaScript is provided by Ocsigen, and described in [9].
On the theoretical side, a framework integrating of statically and dynamically typed (functional) languages
is presented in [6]. In [10] a cast construct wrapping dynamic code is introduced, and it is showed how it can
be used to prove the source of run time type errors. Support for dynamic languages is provided with ad hoc
constructs in Scala, see [7]. Finally, a construct similar to stm2exp, is studied in [2], where it is shown how
to use it to realize dynamic binding and meta-programming, an issue we are planning to address.
Our future work will be on the practical side to use the intermediate language to integrate F# code and
JavaScript or Python native code. On the theoretical side, we plan to finish the proof of full abstraction
of the translation from F# to the intermediate language, and from this to the target languages. Moreover,
we would like to explore meta-programming on the line of [2]. We also plan to explore the extension to
polymorphic types of the type system for the intermediate language, which is, as shown in [1] non trivial.
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