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1 Introduction

Parity games (see below) are a type of 2-player games that are studied in the
area of formal verification of systems by model checking. Deciding the winner in
a parity game is polynomial time equivalent to the model checking problem of
the modal µ-calculus (e.g., [3]). Another strong motivation lies in the fact that
the exact complexity of solving parity games is a long-standing open problem,
the currently best known algorithm being subexponential [5]. It is known that
the problem is in the complexity class UP ∩ coUP [4].

In this paper we identify restricted classes of digraphs where the problem is
solvable in polynomial time, following an approach from structural graph theory.
We consider three standard graph operations: the join of two graphs, repeated
pasting along vertices, and the addition of a vertex. Given a class C of digraphs
on which we can solve parity games in polynomial time, we show that the same
holds for the class obtained from C by applying once any of these three operations
to its elements.

These results provide, in particular, polynomial time algorithms for parity
games whose underlying graph is a tournament (i.e., an orientation of a complete
graph), a complete bipartite graph, a block graph, or a block-cactus graph. These
are classes where the problem was not known to be efficiently solvable.

Previous results concerning restricted classes of parity games which are
solvable in polynomial time include classes of bounded tree-width [7], bounded
DAG-width [1], and bounded clique-width [8].

Notation and Preliminaries. A parity game P = (V, V◦, V2, E,Ω) is a
finite directed graph (V,E) with a partitioning of the nodes V = V◦∪V2 equipped
with a priority map Ω : V → N. A play on P starts with a token placed on some
vertex v ∈ V . If v ∈ V◦, Player ◦ moves the token to a successor of v, otherwise
V2 moves it to a successor. If there is no successor, the respective player loses. If
the play continues forever, Player ◦ wins the game if and only if the maximum
priority that appears infinitely often is even.
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A positional strategy for Player ◦ is a map ρ : V◦ → V such that ρ(v) is a
successor of v for all v such that v has a successor. We only consider positional
strategies in this paper. A play v = v0, v1, v2, . . . conforms to ρ if vi+1 = ρ(vi)
for all i such that vi ∈ V◦. A strategy ρ is a winning strategy for Player ◦ from
vertex v if every play that starts at v and conforms to ρ is winning for Player ◦.
We call the set of vertices W◦(P ) ⊆ V from which Player ◦ has a positional
winning strategy the winning region of Player ◦, similar for W2 and Player 2.
We will write W◦, W2 if the game is clear from the context. Parity games are
positionally determined in the sense that W◦ ∪W2 = V and W◦ ∩W2 = ∅ [3].

Given A ⊆ V , we denote by P ∩A the parity game restricted to the vertices
in A, that is, (V ∩A, V◦ ∩A, V2 ∩A,E ∩ (A×A), Ω �A). Similarly, P \A stands
for the game P ∩ (V \ A). Given a class of parity games C, we say that C is
hereditary if for all P ∈ C and all subsets A of vertices of P , we have P ∩A ∈ C.
If i ∈ {◦,2}, we denote by i the element of {◦,2} \ {i}.

2 Tournaments and Joins of Digraphs

We start by describing a polynomial-time algorithm for solving parity games on
tournaments. In doing so, we observe that our algorithm can handle more general
parity games. In particular, it can handle games with the sole requirement that
between every vertex of Player ◦ and every vertex of Player 2 there is an arc.
This technique will then be generalized so that, as a very specific case, we obtain
that parity games are solvable in polynomial-time on any biorientation of a
complete bipartite graph. A biorientation of an undirected graph G is a directed
graph G′ with the same nodes as G such that for every edge {x, y} ∈ E(G), the
graph G′ contains the arc (x, y), (y, x), or both.

We note that this result is not a special case of Obdržálek’s polynomial
time algorithm [8] for parity games of bounded directed clique-width because
biorientations of complete graphs or complete bipartite graphs do not have
bounded directed clique-width although their underlying undirected graphs have
bounded clique-width.

We say that a digraph D = (V,E), with a partition of its vertices V = V◦∪V2,
is a weak tournament if between every two vertices v ∈ V◦, w ∈ V2 we have that
(v, w) ∈ E or (w, v) ∈ E (or both).

In Algorithm 1 on the next page, the function Solve-Single-Player-Game
solves single-player games in polynomial time (see [3]). We denote by attri(A)
the set of vertices in V from which Player i has a strategy to enter A at least
once and call it the i-attractor set of A. This notion is well-known [3] and stands
at the basis of the exponential-time algorithms of McNaughton [6] and Zielonka
[9].
Theorem 1. Algorithm 1 correctly computes the winning regions of a parity
game P = (V, V◦, V2, E,Ω) on a weak tournament and runs in time O(|V |4).

Theorem 1 can be generalized to handle larger collections of digraphs, as long
as the property that one of the winning regions induces a digraph on which we
can efficiently solve parity games is maintained.
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Algorithm 1: An algorithm for solving parity games on weak tournaments
Solve(P = (V, V◦, V2, E,Ω))

(A◦, A2) ← Solve-Single-Player-Game(P ∩ V◦)
if A◦ 6= ∅ then (W◦,W2)← Solve(P \A◦); return (W◦ ∪A◦,W2)
(B◦, B2) ← Solve-Single-Player-Game(P ∩ V2)
if B2 6= ∅ then (W◦,W2)← Solve(P \B2); return (W◦,W2 ∪B2)
d←Maximum-Priority(Ω)
i← ◦ if d is even, 2 otherwise
(C◦, C2) ← Solve(P \ attri(Ω−1(d)))
if Ci 6= ∅ then return (Wi ← ∅, Wi ← V )

else return (Wi ← V , Wi ← ∅)

If P = (V, V◦, V2, E,Ω) and P ′ = (V ′, V ′◦, V ′2, E′, Ω′) are two parity games
with V ∩ V ′ = ∅, we say that parity game P ′′ = (V ′′, V ′′◦ , V ′′2 , E′′, Ω′′) is a join
of P and P ′ (see Figure 1) if

– V ′′ = V ∪ V ′, V ′′◦ = V◦ ∪ V ′◦, V ′′2 = V2 ∪ V ′2,
– E′′ = E ∪ E′ ∪ E∗, where E∗ ⊆ (V × V ′) ∪ (V ′ × V ) contains at least one

arc (x, y) or (y, x) for all x ∈ V , y ∈ V ′,
– and the vertices of P ′′ have the same priorities as they have in P and P ′.

Given two classes of parity games C and C′, we denote by Join(C, C′) the class
Join(C, C′) := {P ′′ | P ′′ is a join of P ∈ C and P ′ ∈ C′}.

Theorem 2. If C and C′ are hereditary classes of parity games that we can
solve in polynomial time, then there is an algorithm for solving parity games in
polynomial time on all games P ′′ ∈ Join(C, C′), assuming a decomposition of P ′′
as a join of P ∈ C and P ′ ∈ C′ is given.

3 Pasting of Parity Games and Adding a Single Vertex

Let P, P ′ be two parity games on disjoint vertex sets and let v and v′ be vertices
of P and P ′, respectively. Assume that v, v′ have the same priority and belong
to the same player. We say that a game P ′′ is obtained by pasting P, P ′ at v, v′
if P ′′ is the disjoint copy of P and P ′ with v, v′ identified (see Figure 1). Given
a class of parity games C, we denote by P (C) the class of games obtained by
repeated pasting of a finite number of games from C.

Theorem 3. If C is a hereditary class of parity games that can be solved in
polynomial time, then there is a polynomial time algorithm for solving parity
games in P (C).

As a corollary of Theorems 1 and 3, we can solve parity games in polynomial
time on any orientation of a block-cactus graph, that is, a graph whose maximal
2-connected components are cliques or cycles.

Our last result states that if P is a parity game and v a vertex such that
P \ {v} can be solved in polynomial time, then we can solve P in polynomial
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join−−→ paste−−−→

Fig. 1. The join and paste operations. The dashed lines represent necessary edges.

time. More formally, if C is a class of parity games, then C+ is the class obtained
by adding a single vertex to every graph in C in any possible way.

Theorem 4. If C is a hereditary class of games such that the decision problem
(i.e., P ∈ C?) is in polynomial time and games in C are solvable in polynomial
time, then games in C+ are solvable in polynomial time.

This theorem implies, for example, that if parity games can be solved in
polynomial time on planar graphs, then they can also be solved in polynomial
time on apex graphs, which are planar graphs with one additional vertex.

4 Conclusions

We have presented some graph operations that preserve the solvability of parity
games in polynomial time. Generalizing this approach to more graph operations
that generate larger classes of graphs is a possible line of future research.
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