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1 Introduction

Traffic models are fundamental resources in the management of road network.
A real progress in the study of traffic has obtained with the introduction of the
models based on cellular automata (CA). CA models (CAMs) have the ability of
being easily implemented for parallel computing because of their intrinsic syn-
chronous behavior. They are conceptually simple, since a set of simple rules can
be used to simulate a complex behavior. The traffic models based on CA are ca-
pable of capturing micro-level dynamics and relating these to macro-level traffic
flow behavior. However, they are lack of the accuracy of other microscopic traffic
models like the time-continuous car-following [1] ones where the behavior of a
driver depends only on the leading vehicle. A basic one-dimensional CAM for
highway traffic flow was first introduced by Wolfram, where he gave an exten-
sive classification of CAMs as mathematical models for self-organizing dynamic
systems [9, 10]. In 1992, Nagel and Schreckenberg proposed the first nontrivial
traffic model (the NaSch model) based on CA for single-lane highway [5]. This
paper gave rise to many other CAMs for traffic flow [3, 4, 6–8] whose common
feature is that cells represent a piece of the road (“NaSch-type” models).

In this paper, we abandon the idea of dividing the road into cells and we
introduce a new traffic model for highways using continuous cellular automata
(CCA) to introduce the continuity in space. We consider a hybrid between the
usual microscopic models (in general defined by means of a system of differential
equations) which are very accurate in predicting general traffic behavior but com-
putationally expensive, and the usual CAMs which are very efficient due to their
simplicity and intrinsic parallelism making them natural to be implemented for
parallel computing. This process of passing from the typical coarse-granularity
of CAMs to the continuity in space is done assuming that cells represent ve-
hicles. In this way, we obtain the immediate advantage of having less cells to
compute. The continuity also gives us the possibility to refine the microscopic
rules that govern the traffic dynamics using fuzzy reasoning to mimic different
real-world driver behaviors. All parameters of the decision process of the drivers
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are modeled individually by means of fuzzy subsets, thus various types of drivers
can be taken into consideration. This gives us the possibility to study how the
heterogeneity influences the traffic macroscopically. The CCA model proposed
in this paper is defined first for a single-lane road and then we extend the model
to the multi-lane case where the extension is not as natural as “NaSch-type”
models.

2 Overview of the Model

The single lane model is a CCA SL = (Z, Σ,N , δ) where the lattice is the set of
integers and the set of cell states Σ = (K×R

+

0 ×R
+

0 ×R×{L, 0, R}×{L, 0, R})∪
{⊥}. A cell with the empty state ⊥ represents a cell without a vehicle. The
generic i-th non-empty cell is in the state σi(t) = (ki, xi(t), vi(t), si(t), di(t), d

′

i(t))
where

– ki represents the kind of vehicles (seen as a unique entity driver/vehicle).
It contains all the parameters such as: the maximum velocity (vmax), the
optimal velocity (vopt), the length (li), the fuzzy membership functions, the
maximum stress (smax), the minimum stress (smin), the probability functions

of lane-changing to the right lane (PR(x)) and to the left lane (PL(x)) (used
in the multi-lane model).

– xi(t) is the position, vi(t) is the velocity, and si(t) is the stress, a variable to
keep track of how much the driver is above or below of his optimal velocity.
In the single-lane model, si(t) is introduced to implement a more realistic
driver behavior since drivers usually tend to decelerate when they are moving
with a velocity higher than their optimal velocity. However, this parameter
is mainly used in the lane-changing process of the multi-lane model.

– di(t) is the variable describing the desire for: lane-changing to the left “L”,
to the right “R” and staying on his own-lane “0”, and d′i(t) is the variable
showing from which lane the i-th vehicle is transferred: from the left lane
“L”, from the right lane “R” and not transferred “0”(these variables are
used just in the multi-lane model).

N is a kind of one-dimensional extended Moore neighborhood defined by N (i) =
(i − 1, i, i + 1, i + 2), and δ : Σ4 → Σ is the local transition function de-
fined componentwise. The space is updated by xi(t + 1) = xi(t) + vi(t + 1)
(the unit of time is fixed to 1 sec.) and the velocity is updated by vi(t + 1) =
min(vmax, ∆x+

i (t),max(0, vi(t) + Ai(t))) where Ai(t) is the acceleration calcu-
lated using two sets of fuzzy IF-THEN rules (see Fig. 1) which take into consider-
ation the distances and collision times of the back, front and next front vehicles,
and the velocity. Besides the fuzzy rules to calculate Ai(t), it is worth noting
that in the case Ai(t) is the stochastic function defined by Ai(t) = 7, 5 m/s2

with probability p and Ai(t) = 0 otherwise, we essentially obtain the Nagel and
Schreckenberg’s first stochastic model [5] with the only difference that the space
here is continuous. However, we have chosen to implement the decision of the
acceleration using two fuzzy modules to mime driver behaviors more realistically.
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Fig. 1. A block diagram of the local transition function δ

The extension to the multi-lane case is not trivial as it is in the NaSch-type
models where adding a lane simply means adding an array of cells and where
the local transition function can naturally be extended. This is a consequence
of having a clear physical interpretation of the model given by the fact that
space is represented by cells. The most natural candidate is a union of inter-
acting single-lane CCA where the interaction is given by a transfer operation.
The process of transferring a vehicle from one lane to another depends on the
desire of the vehicle to change lane (calculated using a stochastic process de-
pending on the stress parameter) and the physical possibility of a vehicle to get
transferred to a lane (depending on some safety constraints). Suppose that we
have M -lanes represented by M -copies of the single-lane CCA SL in the con-
figurations c1, . . . , cM . We scan each lane starting from the left-most lane (in
the configuration c1) and we transfer the vehicles to the adjacent lanes. After
this process, for each lane we apply the single-lane CCA model to update the
configuration and this update is done by means of the global transition function
of SL. In this way, we obtain a new array of configurations c′1, . . . , c

′

M , and this
process represents 1 sec. of the simulation. Although this model is presented as
an array of communicating CCA, we have proved that it is possible to define a
CCA which actually simulates this model.

3 Conclusion

For a first test, we implement the model using Python with an object-oriented
philosophy of programming. Using a questionnaire we set up two kinds of vehi-
cles (long vehicles and passenger vehicles) which we have used to run a series of
experiments. Analyzing the experimental results, we study the influence of dif-
ferent composition of vehicles on the macroscopic behavior of the traffic in order
to observe the typical traffic flow phenomena (see Fig. 2). The code written in
Python does not take advantage of the CA and its typical synchronous behavior.
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For this reason, we also adapt the code using PyCuda to partially parallelize the
multi-lane model on GPU’s and we see that it is possible to boost the speed of
execution by a factor of ∼ 10, for instance, 1000 steps of the simulator with 5000
vehicles are run in 194 sec. instead of 1608 sec. (on a laptop equipped with a
processor i7 intel and with a graphic card NVIDIA GeForce GT 555M).

Fig. 2. The effect of heterogeneity on the fundamental diagram
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