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Abstract. In this paper we propose a simulation of Work-Time frame-
work algorithms on the recently proposed Speculative Prefetcher and
Evaluator (SPE) processor, using a pipelined hierarchical memory. This
allows us to inherit the efficency of work-optimal parallel algorithms in
this new model.
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1 Introduction

The Random Access Machine (RAM) is an idealized sequential computational
model, in which the time to access any memory location is independent from
memory size [8]. This assumption is unsuitable for physical machines, because
of the principles of maximum information density and maximum information
speed [4]. Indeed their combination imposes a minimum access latency, which
grows with the size of the memory. RAM complexity is therefore an automatic
lower bound for a given problem on any real sequential machine.

One of the main aims of recent literature is to devise implementable machine
designs which hide or limit the latency impact, matching the ideal lower bounds.
To this purpose, two major algorithmic strategies have been investigated: locality
and concurrency of memory accesses. At the same time, models suitable to ex-
hibit and measure them have been devised, respectively by means of hierarchical
memories and pipelined memories.

Among the first we recall the Hierarchical Memory Model (HMM) [1], which
is characterized by a non-decreasing function a(x) that describes the access time
to location x, implying that locations near to the processor take a lower time
to be accessed. The Block Transfer (BT) [2] model extends the HMM, allowing
the transfer of B adjacent locations starting from address x in a(x) + B steps.
These models encourage the design of algorithms exhibiting temporal locality,
that is to use more often memory locations with a lower address, since they
have a lower access time. The BT considers also spatial locality, or the access
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of adjacent data in a short time window. These models are good simplification
of actual computer memories, which are hierarchically divided in several levels
– from fast yet small caches to slow yet huge mass storage – among which
data is transferred in blocks. A special case of BT is the Disk Model (DM)
[15], which has been used to model the disk bottleneck and study the disk I/O
efficiency of algorithms. Although general simulations of RAM algorithms in
these models yield a worst case slowdown proportional to the memory latency,
algorithms exhibiting locality can reach the same performance, as in matrix
multiplication [1]. Nevertheless, algorithms which need to read the whole input
present superlinear lower bounds; for example the touch problem – which consists
in accessing each of the n elements in input and triavially solvable in n step in
RAM model – has Θ(n) = n log∗ n complexity in the BT model with access
function a(x) = log x [2].

On the other hand, Pipelined Memories (PM) [14] allow latency hiding
through overlap of accesses. In particular they can perform k independent re-
quests to the memory of M locations waiting only O(a(M)+k) step for receiving
all the responses. One should note that, unlike BT, accesses need not involve ad-
jacent locations, nevertheless we have to know in advance enough independent
requests to amortize the latency cost. PMs can solve the touch problem in linear
time, still they have superlinear performance in problems where there are strong
dependencies among instructions.

Recently [3] introduced a pipelined and hierarchical memory design which
complies with physical constraints. This, jointly with the SPE processor, forms
the Pipelined Hierarchical Memory Machine (PHMM), which is able to match
RAM complexity (O(1) slowdown) on wide classes of programs, exploiting both
concurrency and locality.

Before memory models, these strategies were already been extensively studied
in parallel computing, since concurrency allows independent executions among
the processors and locality limits communication among these. This fact is
pointed out by several works which show how to effectively simulate parallel
models in memory models, partially carrying the knowledge of parallel comput-
ing in this field. For example, in [6] and [14], general Parallel Random Access
Machine (PRAM, the ideal parallel model) simulations are proposed respectively
on DM and PM, deriving new upper bounds for some problems on these memory
models exploiting previously known parallel results. In [9] is shown how to turn
the submachine locality of the Decomposable Bulk Synchronous Parallel model
(D-BSP, a parallel model where also communication and synchronization costs
are considered) in locality of references for the HMM.

Our paper is related to these works; in fact we propose a simulation of Work-
Time (WT) framework [12] – a parallel framework which highlights parallelism
and critical path of parallel algorithms – on the PHMM. This simulation, when
applied to work-optimal WT algorithms, provides optimal algorithms for the
PHMM. In particular we use it to obtain an optimal merge implementation,
improving the previously best known result, which has superlinear complexity.



We also show how the whole exploitation of available parallelism can lead to a
simulation with a huge memory footprint and degrading its performance.

The paper is organized as follows: in Sections 2 and 3 we recall concepts about
SPE and parallelism. Section 4 contains our simulation, whose applications are
shown in Sect. 5. Conclusions and further research directions are in Sect. 6.

2 The Speculative Prefetcher and Evaluator

The Speculative Prefetcher and Evaluator is a processor design which is able
to exploit a Pipelined Hierarchical Memory (PHM) while complying with the
physical constraints discussed in [4]. Both have been introduced in [3].

The memory features a size M and latency access function a(x). It can accept
a request per cycle for an arbitrary location x, guaranteeing a response within
a(x) cycles. One should note that the latency of k requests is determined by the
location with higher address accessed, unlike PMs where latency is always a(M).

SPE has an Instruction Generator Unit (IGU), connected to an instruction
PHM, and an Instruction Execution Unit (IEU), connected to a data PHM of
M locations. Both IGU and IEU have O(k) constant–sized units called stations
and arranged as linear arrays. Parameter k denotes the processor size and is
choosen to match the worst case latency a(M).
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Fig. 1. Scheme of the PHMM architecture: IGU reads instructions from the instruction
PHM, produces a segment and passes it to IEU stations. Here data are speculatively
prefetched and instructions are executed, solving possible invalid data with the internal
forwarding or reading them from data PHM.



The computation consists in a sequence of stages. In each stage the IGU reads
instructions from the instructions PHM, assembling a segment (the number of
stations used in the IEU) of machine code instructions for the IEU. In particular
IGU predicts possible branches of the code and then loads the obtained sequen-
tial segment in the IEU, one instruction per station. The execution consists in a
series of rounds in which instructions are executed. Each round is divided in two
parts: in the first the IEU speculatively prefetches the operands of all the in-
structions of the segment, both directly and indirectly addressed; in the second,
all the stations execute sequentially with the speculative operands they hold. In
case of mispredicted operands, due for example to indirectly addressed operands
whose base address has been changed by previous stations, another round takes
place.

Anyway, some memory accesses are avoided through a mechanism of internal
forwarding among stations. This mechanism allows the stations to forward their
computed result along the linear array connecting them. In this way, if the value
of an operand is modified by a station, making invalid the prefetched values
of the followings stations, the new value will be immediately available to them
without new memory accesses, but simply receiving it from the linear array.

One should note that the load of a(M) instructions per round gives us an
amortized O(1) set up time per station. Moreover the segment size can be di-
namically decreased to take advantage from the hierarchical structure of the
memory. When the speculative prefetch or the internal forwarding succeed in
avoiding further memory accesses, also each instruction execution takes O(1)
step.

In order to understand the segment assembly problems, we recall the defini-
tion of dependency-related concepts.

Definition 1. There is Functional Dependency (FD) between instructions Ij
and Ik if Ij modifies m[x], and Ik uses the content of m[x] as operand or to in-
directly address the output location, while no operation among Ij and Ik modifies
m[x].

Definition 2. There is Address Dependency (AD) between instructions Ij and
Ik if Ij modifies m[x], and Ik uses the content of m[x] to indirectly access to an
operand, while no operation among Ij and Ik modifies m[x].

Clearly, memory accesses due to FD can be avoided in SPE thanks to internal
forwarding. Instead AD is harder to be addressed and requires a new fetch of
operands.

Definition 3. Given the instruction stream (I1, I2, . . . , IN ) produced by the ex-
ecution of a SPE program P on a particular input, its address dependence depth
D is the maximum length of a subsequence Ij1 , Ij2 , . . . , IjL with j1 < j2 < · · · <
jL where subsequent instructions have address dependency.

Let us recall two important program categories.

Definition 4. A program P is straigth–line if it consists of only data processing
instructions.



Definition 5. A program P is direct–flow if it is straigth–line and does not
use indirect addressing.

In [3] it is shown that any N instructions straigth–line program with address
dependence depth D and accessing memory locations with address smaller than
M can be executed by an SPE with PHM in time T = O((D + 1)(N + a(M))).
Moreover, a direct–flow program can be executed in T = O(N + a(M)).

In particular the following result from [3] holds:

Proposition 1. A program consisting in nested for loops where the only branches
are those related to the cycles, can be executed in T = O(D(N + a(M))).

Proposition 1 applies to wide classes of programs, such as FFT and Matrix
Multiplication.

We quote the following example, which intuitively shows how this occurs.

Example 1. Let’s consider the execution of a C-like code that increments every
element of an array: for i=1 to k; A[i] = A[i]+1. Using the naive branch
prediction policy that always reenters the loop, the IGU can unroll the loop in
i=1; m[i]=m[i]+1; i=i+1; m[i]=m[i]+1; .... At this point, the SPE spec-
ulatively calculates all the i values in the first round, prefetching the right
operands at the beginning of the second one, whose speculative execution cor-
rectly completes the segment execution. So it can resolve address dependencies
in O(1) amortized time.

3 Parallel Computing Background

Definition 6. A Parallel Random Access Machine (PRAM) [10, 11] is an ab-
stract parallel machine model, that consists in a collection of P synchronous
processors and M shared memory locations.

Definition 7. A PRAM program is a sequence of parallel steps, each of which
specifies an instruction per processor.

Beside the number of nodes, the computational power of a PRAM is deter-
mined by which shared memory operations are permitted. Within a step, in fact,
each memory location may or may not be accessed by more than one processor.
In other words, a PRAM can be provided with either an exclusive read (resp.
exclusive write) memory, or a concurrent read (resp. concurrent write) memory.
Moreover, when concurrent writes are allowed, a contention policy must be spec-
ified in order to determine the actual memory state after the access. The most
studied configurations, in order of increasing power, are exclusive read exclu-
sive write (EREW), concurrent read exclusive write (CREW), concurrent read
concurrent write (CRCW).

Both SIMD and MIMD versions have been studied, anyway they are equiv-
alent [7] if they feature the same memory access policy.



Definition 8. The Work-Time model (WT) [12] is a parallel programming
model in which an algorithm AWT consists in an ordered sequence of T sets
s0, . . . , sT−1 of independent operations on MWT memory locations. Different sets
may differ in size and therefore exhibit more or less parallelism. Let |si| = pi,

then we define the work W of AWT as W =
∑T−1
i=0 pi.

It should be noted that, since it is always possible to simulate AWT on a
RAM in time TRAM = W , lower bounds on RAM complexity automatically
hold also for the work. In particular, let T ∗

RAM be the best RAM complexity for
a given problem. Then, the equivalent WT algorithm AWT is work–optimal if
and only if W is O(T ∗

RAM ).
WT algorithms are meant to be executed by PRAMs, by means of a schedule.

A sufficient condition for a valid schedule of AWT in a PRAM is that each
operation in si is executed after all operations in si−1 and before any operation
in si+1. This schedule allows us to apply Brent’s Theorem [5] and to execute
AWT in a PRAM with P processors in a time O(WP + T ).

On the other hand, it is not clear how we can reschedule a PRAM program
for P processors as the processor number increases, since possible dependencies
between steps are not stated explicitly. For this reason WT framework is much
more convenient if we need to extract dependencies and available parallelism.

The major construct of the WT model is the pardo, which specifies a parallel
step with a syntax similar to a traditional for. The main difference is that the
cycle index denotes just the index of an element of the set of instructions and
can not be modified by the instructions. For example

for j, 1 ≤ j ≤ p pardo

operationj

denotes a set of p independent operations, whose execution order is irrelevant.
Since WT framework is a very high level model, it is important to pay at-

tention to some hidden low level details. In particular, one should note that in
each parallel step:

F1 guarantees that all the reads take place before any write;
F2 allows addresses to be expressed in a high level fashion.

Therefore any simulation or implementation of an algorithm which relies on
such features has to provide them. For the sake of clarity we avoid to explicitly
address these issues by resorting to a slightly more constrained yet equivalent
case. We then show how to map the general case to this.

Let us introduce a class of WT algorithms.

Definition 9. A step of WT algorithm AWT is CRCW decoupled if any concur-
rently accessed memory location is either read or written. AWT is itself CRCW
decoupled if this condition holds for each step.

Any CRCW decoupled algorithm does not rely on (F1). In the opposite case,
it is possible to devise an equivalent CRCW decoupled algorithm with the same



work and time complexity. In fact, it suffices to split each parallel step into two
sub–steps. The first fills an auxiliary array with the operation inputs, while the
second performs the actual execution, reading from the array. In the worst case,
the memory overhead is O(p).

Consider now, without loss of generality a SIMD parallel step in the WT
framework, which executes on an initial memory state Mi and leads to final
state Mi+1. Available parallelism and the memory locations that must be read
or written (both usually parametrized with the size of the input) are indicated by
a pardo statement. In particular an index j is used to distinguish each concurrent
operation. Note that the memory to store one step is constant and therefore the
whole program takes O(T ) memory.

One can think the operands of operation j to be a function of j. Typically,
such function is simple enough to be expressed by the addressing modes of a mod-
ern instruction set (for example a base address and an index–dependent offset).
In the most general case, when (F2) is fully exploited, the function can be ex-
plicitly used to prepare an auxiliary operand vector. This preliminary phase can
be implemented with a memory overhead depending on how much parallelism
we want exploit (up to pi). In particular for the SPE, O(k) memory locations
are sufficient.

4 Simulation of WT Algorithms

One way to write efficient programs for SPE is to exploit the parallelism of
Work–Time algorithms. Parallel steps can be efficiently coded into programs,
also in case of concurrent memory accesses, which can be implemented with
little effort. In fact, the address dependence depth of the resulting segments is
O(1), and memory accesses can be fully pipelined.

However, it must be noted that a trivial static unrolling of a pardo statement
could lead to an SPE program with O(W ) size. In this case, instruction fetch
latencies could be larger that data latencies, thus hindering time efficiency.

A more complicated unrolling, proportional to processor size, can be devised,
which leads to programs with O(kT ) size. This last strategy is not the most
compact; still it is interesting because it also applies to the SP processor (see
[3]). On the contrary SP does not efficiently support the strategy described next.

Without loss of generality (see Section 3), let us restrict our scope to CRCW
decoupled WT algorithms. The resulting simulation is itself rather simple. If
only exclusive writes are used, WT statement

for j, 1 ≤ j ≤ p pardo

operationj

can be coded for SPE with a loop in the form:

segmentsize(min(k, p))
for j, 1 ≤ j ≤ p do

instructionsj



where instructionsj is the SPE coding for the high level WT operation.
As for concurrent writes, contention policies are quite different one from

another, and therefore different approaches are needed for their implementation.
For example, in case of reduction–like policies, such as Max, + or logical AND,
it is sufficient to append the appropriate reduction instruction to the core of the
loop. The resulting SPE code would look like:

segmentsize(min(k, p))
for j, 1 ≤ j ≤ p do

instructionsj
acc← max{acc; outputj}

where outputj is the result of instructionsj , the reduce operation is a Max
and the final result is accumulated in variable acc.

Another common policy, priority CW PRAM, can be implemented recurring
to predicated instructions, whose output is committed to memory only if a certain
condition is verified.

It must be noted that the correctness of the simulation relies on the following
fatcs:

– SPE instructions are chosen to match the corresponding WT operations;
– each SPE instruction gets the right operands;
– memory writes are consistent with the policy specified by AWT .

Hence, Proposition 2 holds true.

Proposition 2. Given WT parallel step si, it is possible to implement an equiv-
alent SPE program P, such that they both lead from memory state Mi−1 to Mi.

Before examining the time complexity of the simulation, we must consider
its memory footprint.

Proposition 3. Let M
(i)
WT (resp. M

(i+1)
WT ) be the size of memory state Mi (resp.

Mi+1), and let MPH be the amount of memory needed by P. Then, both MPH

and M
(i+1)
WT are O(M

(i)
WT + p).

Proof. Since p is the number of operations of the parallel step,M
(i+1)
WT isO(M

(i)
WT+

p).
As for MPH , an auxiliary operand vector only needs O(min{p, k}) = O(p)

extra space. ut

Proposition 4. WT CRCW parallel step with p available parallelism can be
translated into a SPE program P with O(p+ a(MPH)) time complexity.

Proof. Consider the for loop which implements the simulation. Its body has O(1)
address dependence depth. Therefore, as in Example 1, the IGU is able to roll out
dp/ke segments with O(k + a(MPH)) time complexity each. More precisely, at
least dp/ke − 1 segments have O(k) complexity, since k ≥ a(Mtotal) ≥ a(MPH).
Summing up, we get O(p+ a(MPH)).



As for reduction–like CWs, the simulation adds a functional dependency for
each concurrent WT operation. Anyway, the internal forwarding mechanism of
SPE can deal with them at a constant multiplicative slowdown. The same holds
for CW implementations based on predicated instructions. ut

Next we show how Proposition 4 can be repeatedly applied in order to get a
whole SPE implementation of AWT . Correctness follows from the fact that each
single application produces the same memory state as the correspondent parallel
step.

Theorem 1. Consider WT algorithm AWT , with W work and T time com-
plexity. Then an equivalent SPE program PA can be written, with complexity

O(W + Ta(MPH)), where MPH is maxi{M (i)
PH}.

Proof. PA can be obtained with T applications of Proposition 4. The resulting

complexity is therefore
∑
iO(pi + a(M

(i)
PH)), which is O(W + Ta(MPH)). ut

One should note that this simulation results in a program of O(T ) instruc-
tions. Therefore instruction memory latencies can be ignored.

Corollary 1. Let AWT be a work–optimal WT algorithm. If Ta(MPH) is O(W ),
then there exists a SPE simulation of AWT with optimal RAM complexity.

As for MPH , an immediate consequence of Prop. 3 follows.

Proposition 5. MPH = maxi{M (i)
PH} is bounded from below by the maximum

available parallelism of AWT plus input size; from above by the work and the
input size. Formally: n+ maxi{pi} ≤MPH ≤ n+W .

In general, any work–optimal parallel algorithm with polylogarithmic time
complexity is a good candidate for efficient implementations on the SPE, if
a(x) < x.

Anyway, another metric emerges from Prop. 5. In fact, exploiting all the
available parallelism can affect memory usage, therefore increasing worst case
latencies. Actually, once the condition Ta(MPH) = O(W ) is met, any further
parallelism would just increase memory footprint.

Section 5 contains a clear example of how this metric can be used.

5 Applications

Corollary 1 can be successfully applied to work–optimal WT algorithms which
exhibit polylogarithmic time T , whenever the memory access function of the
PHM is xα, 0 < α < 1 or log x. Finding connected components of a dense,
undirected graph, for example, can be done with T = log2 n and W = n2 (see
[12]) where input size is O(n2), n being the number of nodes. Therefore, we can
implement a program for SPE with O(n2 + log2 n · a(n2)) = O(n2) complexity,
which is optimal.



An analogous result holds for the problem of merging two sorted lists of n
elements. In this case we can resort to the work–optimal algorithm in [13], which
results in a linear SPE program.

Some further analysis is needed, though, when these solutions are used as
subroutines of larger programs. In particular, the underlying assumption that
all the input is stored in the fastest memory locations may not hold. Consider
for example an iterative bottom–up implementation of mergesort for an SPE
with a(x) = xα. At iteration j, we have to merge pairs of 2j-sized lists, with
the ith pair starting at position 2j+1i. Each such merge has a O(2j + a(2j+1i))
complexity, which results to be superlinear if O(2j) < O(a(2j+1i)). For example
the overall complexity of step j = 0 is O(n1+α).

In this case, a technique similar to the execution of consecutive searches of
[14] can be employed. Basically, instead of merging one pair of sublists at a
time, whenever the size of the subinstances is small enough, all the merges ad-
vance “concurrently”. Therefore, it is possible to obtain segments of independent
instructions, which are executed efficiently.

An interesting example is matrix multiplication of two n×n square matrices
(input size is O(n2)). Implementing the standard WT algorithm with n3 paral-
lelism yields an optimal SPE implementation P, as far as time complexity is
concerned. The result is achieved even if no locality is exploited. Anyway, P
requires Ω(n3) space to be executed. In other words, a SPE with M available
memory size, could not multiply matrices bigger than M1/3 × M1/3. On the
other hand, implementing a WT algorithm with n2 available parallelism yields
a both time and space optimal SPE program.

6 Conclusions and Future Work

This paper shows a general technique for exploiting the parallelism expressed
by the WT framework in the SPE. In particular, it shows how concurrent op-
erations can be sequentially executed in a pipelined–efficient way, and how such
efficiency can be measured. Besides, it is also shown how too much parallelism
can negatively affect memory usage, also when time complexity is not compro-
mised.

The more straightforward research line involves assessing a larger group of
problems and algorithms, possibly mapping whole computational categories to
classes of SPE programs.

A second line is directed to the integration of this work with memory hier-
archy exploitation.

Finally, as a link between coarse grained parallelism and memory hierarchy
exploitation has already been proved [9], it would be interesting to see if and
how such link exists also for pipelined memory exploitation.
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