Words with the Smallest Number of Closed Factors (extended abstract)

Gabriele Fici¹ and Zsuzsanna Lipták²

 1 I3S, CNRS & Université Nice Sophia Antipolis, France, gabriele.fici@unice.fr 2 Università di Verona, Italy, zsuzsanna.liptak@univr.it

Abstract. A word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences. We show that any word of length n contains at least n+1 closed factors (i.e., factors that are closed words). We investigate the language \mathcal{L} of words over the alphabet $\{a, b\}$ containing exactly n+1 closed factors. We show that a word belongs to \mathcal{L} if and only if its closed factors and its palindromic factors coincide (and therefore the words in \mathcal{L} are rich words). We also show that \mathcal{L} coincides with the language of conjugates of words in a^*b^* .

Keywords: Closed word, closed factor, rich word, bitonic word.

1 Introduction

A word is a finite sequence of elements from a finite set Σ . We refer to the elements of Σ as *letters* and to Σ as the *alphabet*. The *i*-th letter of a word w is denoted by w_i . Given a word $w = w_1 w_2 \cdots w_n$, with $w_i \in \Sigma$ for $1 \leq i \leq n$, the nonnegative integer n is the *length* of w, denoted by |w|. The empty word has length zero and is denoted by ε . The set of all words over Σ is denoted by Σ^* . Any subset of Σ^* is called a *language*.

A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w = zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix of a prefix) of w. The set of prefixes, suffixes and factors of the word w are denoted by Pref(w), Suff(w) and Fact(w)respectively. A border of a word w is any word in $Pref(w) \cap Suff(w)$ different from w. From the definitions, we have that ε occurs as a prefix, suffix and factor in any word. An occurrence of a factor u in a word w is a pair of positions (i, j) such that $w_i \dots w_j = u$. An occurrence is internal if i > 1 and j < |w|.

The word $\tilde{w} = w_n w_{n-1} \cdots w_1$ is called the *reversal* (or *mirror image*) of w. A *palindrome* is a word w such that $\tilde{w} = w$. In particular, the empty word is a palindrome. A *conjugate* of a word w is any word of the form vu such that uv = w, for some $u, v \in \Sigma^*$. A conjugate of a word w is also called a *rotation* of w.

Let w be a word. We denote by PAL(w) the set of factors of w that are palindromes. Droubay, Justin and Pirillo showed [4] that for any word w of length n, one has $|PAL(w)| \leq n + 1$. Consequently, w is called *rich* [6] (or *full* [1]) if |PAL(w)| = n + 1, that is, if it contains the largest number of palindromes a word of length n can contain.

A language L is called factorial if L = Fact(L), i.e., if L contains all the factors of its words. A language L is *extendible* if for every word $w \in L$, there exist letters $a, b \in \Sigma$ such that $awb \in L$. The language of rich words over a fixed alphabet Σ is an example of factorial and extendible language.

We now recall the definition of closed word [5]:

Definition 1. A word w is closed if it is empty or has a factor occurring exactly twice in w, as a prefix and as a suffix of w.

The word aba is closed, since its factor a appears only as a prefix and as a suffix. The word abaa, instead, is not closed. Note that for any letter $a \in \Sigma$ and for any n > 0, the word a^n is closed, a^{n-1} being a factor occurring only as a prefix and as a suffix in it. More generally, any word w that is a power of a shorter word, i.e., $w = v^n$ for a non-empty v and n > 1, is closed.

There exist closed words that are not palindromes, for example the word *abab*. Conversely, there exist palindromes that are not closed, but it is worth noticing that a shortest palindrome over a two-letter alphabet that is not closed has length 14. An example is *aabbabaababbaa*.

Remark 1. The notion of closed word is closely related to the concept of complete return to a factor, as considered in [6]. A complete return to the factor u in a word w is any factor of w having exactly two occurrences of u, one as a prefix and one as a suffix. Hence w is closed if and only if it is a complete return to one of its factors; such a factor is clearly both the longest repeated prefix and the longest repeated suffix of w (that is, the longest border of w). The notion of closed word is also equivalent to that of *periodic-like* word [3]. A word w is periodic-like if its longest repeated prefix does not have two occurrences in w followed by different letters.

Observation 1 Let w be a non-empty word over Σ . The following characterizations of closed words follow easily from the definition:

- 1. w has a factor occurring exactly twice in w, as a prefix and as a suffix of w;
- 2. the longest repeated prefix of w does not have internal occurrences in w, that is, occurs in w only as a prefix and as a suffix;
- 3. the longest repeated suffix of w does not have internal occurrences in w, that is, occurs in w only as a suffix and as a prefix;
- 4. the longest repeated prefix of w does not have two occurrences in w followed by different letters;
- 5. the longest repeated suffix of w does not have two occurrences in w preceded by different letters;
- 6. w has a border that does not have internal occurrences in w;
- 7. the longest border of w does not have internal occurrences in w;
- 8. w is the complete return to its longest prefix;
- 9. w is the complete return to its longest border;
- 10. w = uv = zu, with v, z non-empty, and $Fact(w) \cap \Sigma u\Sigma = \emptyset$.

For more details on closed words and related results cf. [3, 2, 5].

2 Closed factors

Let w be a word. A factor of w that is a closed word is called a *closed factor* of w. The set of closed factors of the word w is denoted by C(w).

Lemma 1. For any non-empty word w of length n, one has $|C(w)| \ge n+1$.

Lemma 2. Let u, v be non-empty words. Then $|C(u)| + |C(v)| \le |C(uv)| + 1$.

Proposition 1. Let w be a non-empty word of length n. If $C(w) \subseteq PAL(w)$, then C(w) = PAL(w) and |C(w)| = |PAL(w)| = n + 1. In particular, w is a rich word.

Bucci et al. showed [2, Proposition 4.3] that a word w is rich if and only if every closed factor v of w has the property that the longest palindromic prefix (or suffix) of v is unrepeated in v. Moreover, if w is a palindrome, then it is rich if and only if $PAL(w) \subseteq C(w)$ [2, Corollary 5.2].

In Section 4, we shall prove that the condition PAL(w) = C(w) characterizes the words having the smallest number of closed factors over a binary alphabet.

3 Words with the smallest number of closed factors

By Lemma 1, we have that n + 1 is a lower bound on the number of closed factors of a word of length n > 0. We introduce the following definition:

Definition 2. A word $w \in \Sigma^*$ is C-poor if |C(w)| = |w| + 1. We also set

$$\mathcal{L}_{\Sigma} = \{ w \in \Sigma^* : |C(w)| = |w| + 1 \}$$

the language of C-poor words over the alphabet Σ .

Remark 2. If $|\Sigma| = 1$, then $\mathcal{L}_{\Sigma} = \Sigma^*$. So in what follows we will suppose $|\Sigma| \ge 2$.

Lemma 3. The language \mathcal{L}_{Σ} is closed under reversal.

Lemma 4. Let w be a C-poor word over the alphabet Σ and $x \in \Sigma$. The word wx (resp. xw) is C-poor if and only if it has a unique suffix (resp. prefix) that is closed and is not a factor of w.

Proposition 2. A word $w \in \Sigma^*$ belongs to \mathcal{L}_{Σ} if and only if every factor of w belongs to \mathcal{L}_{Σ} . That is, \mathcal{L}_{Σ} is a factorial language.

4 Binary words

In this section, we fix the alphabet $\Sigma = \{a, b\}$. For simplicity of exposition, we will denote the language of C-poor words over $\{a, b\}$ by \mathcal{L} rather than by $\mathcal{L}_{\{a, b\}}$. We first recall the definition of bitonic word.

Definition 3. A word $w \in \{a, b\}^*$ is bitonic if it is a conjugate of a word in a^*b^* , i.e., if it is of the form $a^i b^j a^k$ or $b^i a^j b^k$ for integers $i, j, k \ge 0$.

The following lemma, the proof of which is straightforward, relates bitonic words to closed factors.

Lemma 5. If a word $w \in \{a, b\}^*$ does not contain any complete return to ab or ba as a factor, then it is bitonic.

Lemma 6. Let w be a bitonic word. Then $C(w) \subseteq PAL(w)$.

Thus, by Proposition 1, any bitonic word w of length n > 0 contains exactly n + 1 closed factors and so is a C-poor word. In the rest of the section we shall prove the converse, that is, we shall prove that if w is a C-poor word over $\{a, b\}$, then w is bitonic.

Consider the word w = abab. The word w does not belong to \mathcal{L} , since it has 6 closed factors, namely ε , a, b, aba, bab and abab. In fact, it has two suffixes (bab and abab) that are closed and do not appear before in w, and hence by Proposition 2 it cannot belong to \mathcal{L} . More generally, any word u such that u is the complete return to ab or ba does not belong to \mathcal{L} for the same reason. So, using Proposition 2, we get:

Lemma 7. If $w \in \mathcal{L}$, then w does not contain any complete return to ab or ba as a factor.

We summarize the characterizations of \mathcal{L} in the following theorem:

Theorem 1. Let $w \in \{a, b\}^*$. The following are equivalent:

1. $w \in \mathcal{L}$;

C(w) = PAL(w);
C(w) ⊆ PAL(w);
w is a bitonic word;
w does not contain any complete return to ab or ba.

Proof. 1) \Rightarrow 5) by Lemma 7; 5) \Rightarrow 4) by Lemma 5; 4) \Rightarrow 3) by Lemma 6; finally, 3) \Rightarrow 2) and 2) \Rightarrow 1) by Proposition 1.

So, by Theorem 1 and Proposition 1, every word in \mathcal{L} is rich. Notice that there exist rich words that are not in \mathcal{L} , for example the word w = abab, which has 6 closed factors, namely ε , a, b, aba, bab and abab. Another consequence of Theorem 1 is that \mathcal{L} is extendible, since the language of bitonic words is clearly extendible. Thus, the language \mathcal{L} is a factorial and extendible subset of the language of (binary) rich words.

It further follows from Theorem 1 that \mathcal{L} is a regular language, since the language of the conjugates of words of a regular language is regular [7]. In the following proposition we exhibit a closed enumerative formula for the language \mathcal{L} .

Proposition 3. For every n > 0, there are exactly $n^2 - n + 2$ distinct words in \mathcal{L} .

Proof. Each of the n-1 words of length n > 0 in a^+b^+ has n distinct rotations, while for the words a^n and b^n all the rotations coincide. Thus, there are n(n-1)+2 bitonic words of length n, and the statement follows from Theorem 1.

5 Conclusion and open problems

In this paper we studied words with the smallest number of closed factors, which we referred to as C-poor words. We gave some interesting characterizations in the case of a binary alphabet. In particular, we showed that the language of binary C-poor words coincides with the language of bitonic words. A natural direction of further investigation is finding a characterization for C-poor words over alphabets larger than 2.

An enumerative formula for rich words is not known, not even in the binary case. A possible approach to this problem is to separate rich words in subclasses to be enumerated separately. Our enumerative formula for C-poor words given in Proposition 3 constitutes a step in this direction.

References

- S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer. On the palindromic complexity of infinite words. Internat. J. Found. Comput. Sci., 15:293–306, 2004.
- M. Bucci, A. de Luca, and A. De Luca. Rich and Periodic-Like Words. In DLT 2009, 13th International Conference on Developments in Language Theory, volume 5583 of Lecture Notes in Comput. Sci., pages 145–155. Springer, 2009.
- 3. A. Carpi and A. de Luca. Periodic-like words, periodicity and boxes. Acta Inform., 37:597-618, 2001.
- X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some constructions of de Luca and Rauzy. *Theoret. Comput. Sci.*, 255(1-2):539–553, 2001.
- 5. G. Fici. A Classification of Trapezoidal Words. In WORDS 2011, 8th International Conference on Words, number 63 in Electronic Proceedings in Theoretical Computer Science, pages 129–137, 2011.
- A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. *European J. Combin.*, 30:510–531, 2009.
- 7. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2001.