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Abstract. Type-and-effect systems (TESs) have been widely exploited to spec-
ify static analyses of programs, for example to track computational side effects,
exceptions and communications in concurrent programs. We adopt abstract inter-
pretation techniques to reconstruct a TES developed to handle security problems
of a multi-tier web language. In order to reconstruct this type-and-effect analysis
we extended the Cousot’s methodology used for type systems and the correspond-
ing type inference algorithms by defining an abstract domain able to express types
augmented by semantic annotations. This abstract domain is an extension of the
Hindley’s monotypes with a new kind of variables and constraints. We show that
this abstract domain allows us to reconstruct different type-and-effect analyses by
properly changing the set of monotypes and the shape of the constraints. In partic-
ular, we apply this approach to reconstruct the Call-Tracking Analysis. As usual
with abstract interpretation, the analysis is correct by construction. The analyser
has been implemented in OCaml.

1 Introduction

Type-and-effect systems (TESs) are a powerful extension of type systems which al-
lows one to express general semantic properties and to statically reason about program
execution. The underlying idea is to refine the type information so to express further
intentional or extensional properties of the semantics of the program. In practice, TES
compute the type of each program sentence and an approximate (but sound) description
of its run-time behaviour.

Type systems (and the corresponding type inference algorithms) have been recon-
structed as a hierarchy of abstract interpretations by Cousot [3]. In [5,6] we have ex-
tended the Cousot’s methodology to reconstruct the TES used in [1] to handle security
issues in the multi-tier web language LINKS [2]. We have shown that the original anal-
ysis was unsound. We have fixed the flaw and derived a correct analyser as an abstract
semantics. In order to reconstruct this TES we have defined an abstract domain able
to express types augmented by semantic annotations and concrete values. This abstract
domain is an extension of Hindley’s monotypes [7,4,3,9] and it could be easily imple-
mented. Its definition is based on an approach described in [11] and exploits specific
annotated types (simple types), where the annotations are replaced by a special kind of
variables (annotation variables) whose values satisfy suitable constraints. An abstract
value is indeed a pair (ts,C) where ts is a Hindley’s monotype with annotation variables
and C is a constraint whose solution represents the annotation.
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We argue that this abstract domain is general enough to reconstruct different TESs
by properly changing the set of monotypes and the shape of the constraints. To show
the flexibility and the feasibility of our abstract domain we have reconstructed a quite
simple analysis, Call-Tracking Analysis (CTA), for which a TES was provided in [11].
This analysis allows one to determine, for each expression, the type of the computed
value and the function applications which may occur during the evaluation. We defined
this analysis, for a minimal ML core (TINYML). For example, the expression

let rec fact = fun[fact_point] n -> if (iszero n) then 1
else n * (fact (n - 1))

defines a recursive function which computes the factorial of a number and which is
uniquely identified by the label fact point. The CTA computes an abstract value ex-

pressing the annotated type int
{fact point}−→ int, i.e. a function from integers to integers

which could apply the function denoted by the label fact point during its evaluation.
To the best of our knowledge the only paper relating TESs and abstract interpre-

tation is [12]. In this paper Vouillon and Jouvelot introduce a simple program time
complexity estimator for a λ-calculus with recursion. They also define an abstract in-
terpretation and a TES for this analysis. Their main result is that these two a priori
distinct approaches are equivalent. Their abstract semantics computes for each expres-
sion the set of ground types compatible with the value given by the concrete evaluation.
Hence, this abstract domain is more adapt to relate and prove equivalent two differ-
ent approaches than to directly implement an analyser. Our abstract domain, instead, is
designed to be easily implemented.

In this extended abstract we survey the ideas and the methodology underlying our
abstract domain (Section 2) and we show some results obtained by the analyser, imple-
mented in OCaml (Section 3). Page limitation prevent us from giving more details on
the formal development and the implementation issues. A full presentation, including
all the proof and the code can be found in [5].

2 Reconstruction of the Call-Tracking Analysis

In this section we describe the ideas of our reconstruction of the TES for CTA. TINYML
is a minimal core of ML so its syntax is standard and we assume each λ-abstraction to
have a unique label (l ∈ Point).

We define a denotational semantics as concrete semantics[3], that computes a pair
for each expression: its value and the set of the function labels applied during the eval-
uation (the effects). To store the effects we use the effects environment. Since TINYML
is an untyped λ-calculus, we define the semantic domain of values Eval as a recursive
sum of cpos, where each element of the sum represents a suitable class of values.

As usual then we take the powerset of the concrete semantics as the collecting one.
In a TES types can be annotated (e.g. to record latent effects), the definition of a suit-
able abstract domain requires particular care. In [6] we extend the Hindley’s mono-
types by introducing a new kind of variables (annotation variable) and constraints.
In practice, an abstract value is a pair (t,C) where t is an Hindley’s monotype with



annotation variables and C is a set of constraints whose solution represent the anno-
tation that the type can have. For the CTA the domain of abstract values is TypeA =
TypeS×Constr where TypeS is the set of Hindle’s monotypes with annotation vari-
ables1 (Va) and Constr = P (Va×Point) is the set of constraints. A constraint is as a set
of pairs (annotationvariable, label): (δ, l) means that the label l is a member of the
type annotation represented by the variable δ.

A Galois connection relates the abstract and the concrete domain. The connection
is defined in [5] by using standard results, e.g. representation function [10].

The definition of the abstract semantics equations for CTA follows the same schema
of [5,6], but in this case the computed effects concern the function applications encoun-
tered during the evaluation.

3 Examples

The abstract semantics of TINYML has been implemented in OCaml [8]. To illustrate
the analyser, consider the expression

let a = fun[a_point] x -> true in
let b = fun[b_point] x -> false in

(a 1) or (b 1)

defines two constant functions, a and b. The first function returns true, the second one
false. We take the disjunction of applying both function to 1. The analyser computes

(type - : Boolean [(_annvar2_,a_point), (_annvar3_,b_point)] &
{a_point, b_point})

that is the computed value is a boolean and during the evaluation we might apply both
functions. Notice that this happens because during the abstraction process we loose
precision. Since we do not know the values of the disjuncts, we have to evaluate them
both. As a consequence, the resulting effect is not precise, yet safe and valid.

As second example consider the expression

(fun[x_point] x -> x) (fun[y_point] y -> y)

representing the application of the identity function with label x point to the identity
function with label y point. The analyser computes

(type - : Function(_typevar1_, _annvar1_, _typevar1_)
[(_annvar2_,x_point), (_annvar1_,y_point)] & {x_point})

that is the computed type is a function and during the evaluation we might apply the
function identified by the label x point.

1 Actually, for technical reasons TypeS is the lifting of Hindle’s monotypes with idempotent
substitutions and a new bottom, see [5,6]



4 Conclusions

We have shown that abstract interpretation can deal with TESs. We defined an abstract
domain able to express types augmented by semantic annotations and at the same time
simple enough to allow the implementation of an analyser in OCaml. Our abstract do-
main extends Hindley’s monotypes with a new kind of variables and constraints. We
have prove the expressive power of this domain by showing that it allows us to re-
construct different TESs by only changing the set of monotypes and the shape of con-
straints. As an example we have reconstructed the CTA.
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