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Extended Abstract

Clustering or cluster analysis [1] is a classical method in unsupervised learning
and one of the most used techniques in statistical data analysis. Clustering has a
wide range of applications in many areas like pattern recognition, medical diag-
nostics, data mining, biology, market research and image analysis among others.
A cluster is a set of data points that in some sense are similar to each other, and
clustering is a process of partitioning a data set into disjoint clusters. In distance
clustering, the similarity among data points is obtained by means of a distance
function.

Fixed a norm ‖ ‖p (p ≥ 1), the clustering problem consists in finding for a
finite point set X ⊂ Qd and an integer k, a k-partition {A1, ..., Ak} of X that
minimizes the cost function

W (A1, ..., Ak) =

k∑
i=1

∑
x∈Ai

‖x− CAi
‖pp (1)

where CAi
is the p-centroid of Ai, i.e.

CAi
= arg min

µ

∑
x∈Ai

‖x− µ‖pp

Distance clustering is a difficult problem. For an arbitrary dimension d, as-
suming the Euclidean norm (p = 2), the problem is NP-hard even if the number
k of clusters equals 2 [2]; the same occurs if d = 2 and k is arbitrary [3,4]. For
the Euclidean distance, a well-known heuristic is Lloyd’s algorithm [5,6], also
known as the k-Means Algorithm; however there is no guarantee that the solu-
tion yielded by this procedure approximates the global optimum. This algorithm
is usually very fast, but it can require exponential time in the worst case [7].

In real-world problems, often people have some information on the clusters:
incorporating this information into traditional clustering algorithms can increase
the clustering performance. Problems that include background information are
called constrained clustering problems and are divided in two classes.



On the one hand, clustering problems with instance-based constraints typi-
cally comprise a set of must-link constraints or cannot-link constraints [8], defin-
ing pairs of elements that must be included, respectively, in the same cluster or
in different clusters.

On the other hand, clustering problems with cluster-based constraints [9,10]
incorporate constraints concerning the size of the possible clusters. Recently,
in [11] cluster size constraints are used for improving clustering accuracy; this
approach, for instance, allows one to avoid extremely small or large clusters in
standard cluster analysis.

Here we study a constrained clustering problem where the size of clusters
is included in the instance. This problem, called Size Constrained Clustering
Problem (SCC), is formally defined as follows: given a set X ⊂ Qd of n points

and k many positive integers m1, ...,mk such that
∑k

1 mi = n, find a k-partition
{A1, ..., Ak} ofX that minimizes the cost functionW (A1, ..., Ak) such that |Ai| =
mi for each i = 1, ..., k. This problem was studied in [12,13] and it is known to
be a difficult problem. More precisely, the following results hold [13]:

1) For every norm ‖ ‖p with p > 1, SCC with fixed clustering size k is NP-hard,
even in the case k = 2 and m1 = m2 = n

2 .
2) For every norm ‖ ‖p with p ≥ 1, SCC with fixed dimension d is NP-hard,

even in the case d = 1.

As a consequence, we can’t expect to obtain a polynomial-time algorithm for
solving the general SCC problem.

In this paper we investigate SCC in the plane (d = 2) with a fixed clustering
size k = 2. In particular, we consider the following two problems:
• 2-SCC in the Plane:
Given a point set X = {x1, ..., xn} ⊂ Q2 and a positive integer m ≤ n

2 , find a
2-partition {A, Ā} of X with |A| = m, |Ā| = n−m, that minimizes

W (A, Ā) =
∑
x∈A
‖x− CA‖22 +

∑
x∈Ā

‖x− CĀ‖22

where CA and CĀ are the centroid of A and Ā respectively.
• Full 2-SCC in the Plane:
Given a point set X = {x1, ..., xn} ⊂ Q2, for all integers m, 1 ≤ m ≤ n

2 , find the
optimal 2-partition πm = {Am, Ām}, with |Am| = m.

The main results we obtain are the following:

1) There is an algorithm for solving Full 2-SCC in the Plane in time O(n2·log n).
2) There is an algorithm for solving 2-SCC in the Plane in time O(n 3

√
m·log2 n).

It should be observed that, the algorithm for solving 2-SCC in the plane requires
the application of methods for enumerating the k-sets of a collection of points
in the plane, which is a challenging problem [14] in combinatorial geometry.



Here we also study the problem 2-SCC in fixed dimension d. First, we use a
separation result [13] stating that if {A, Ā} is an optimal solution of an instance
of the 2-SCC problem, then A and Ā are separated by an hypersurface of the
form

‖x− α‖pp − ‖x− β‖pp = c

for some constant parameters α, β ∈ Rd, c ∈ R. By applying a suitable method
for decomposing the parameter space R2d+1, one can compute a set of optimal
2-partitions πm = {Am, Ām} such that |Am| = m, for m = 1, ..., bn2 c. This allows
us to design an algorithm for the Full 2-SCC problem in fixed dimension d that
works in polynomial time both in n and p. To obtain this result we make use
of concepts and methods of real algebraic geometry, and in particular we apply
the cylindrical algebraic decomposition [15].

In this work we also study another variant of the clustering problem, called
Relaxed Constraints Clustering Problem (RCC), which is defined as follows: given
a point set X = {x1, ..., xn} ⊂ Qd, an integer k > 1 and a finite setM of positive
integers, find a k-partition {A1, ..., Ak} of X with

|Ai| ∈ M for all i = 1, ..., k

that minimizes the cost function

W (A1, ..., Ak) =

k∑
i=1

∑
x∈Ai

‖x− CAi
‖pp.

We prove that for the euclidean norm ‖ ‖2, the decision version of RCC in
dimension d = 2 is NP-complete even in the case M = {2, 3}. On the contrary,
RCC in dimension 1 is known to be solvable in polynomial time by a dynamic
programming technique [12].
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thesis, University of Milan, Milan (2010)

13. Bertoni, A., Goldwurm, M., Lin, J., Saccà, F.: Size Constrained Distance Cluster-
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