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We present a mathematical model, called Asynchronous Broadcast Networks
(ABN), of distributed computation based on topology-dependent and asyn-
chronous communication. Our model combines three main features: a graph
representation of a network configuration decoupled from the specification of in-
dividual process behavior, a topology-dependent semantics of synchronization,
the use of local mailboxes to deliver messages to individual nodes. The result-
ing communication layer is similar to that of languages like AWN [9]. As in
other protocol models like ! [16,17] and AHN [5], our main abstraction comes
from considering protocols defined via a communicating finite-state automaton
replicated on each node of the network.

Formally, we consider a finite set � of messages, and different disciplines
for handling the mailbox (message buffer), e.g., unordered mailboxes that we
represent as bags over �, and ordered mailboxes that we represent as words
over �. The initial configuration is any graph in which all the nodes are in the
initial control state and all local buffers are empty. Even if the set of control
states is finite, there are infinitely many possible initial configurations. We next
formalize the above intuition.

A mailbox structure is a tuple M = hM; del?; add; del; [℄i, where M is a
denumerable set of elements denoting possible mailbox contents on some fixed
finite alphabet �, and, for a 2 � and m 2 M: add(a;m) denotes the mailbox
obtained by adding a to m, del?(a;m) is true if a can be removed from m;del(a;m) denotes the mailbox obtained by removing a from m when possible,
undefined otherwise. Finally, [℄ 2 M denotes the empty mailbox. We call an
element a of m visible when del?(a;m) = true. The semantics and corresponding
properties change with the type of mailbox considered.

A protocol is defined by a process P = hQ;�;R; q0i, where Q is a finite set
of control states, � is a finite message alphabet, A
t = f�g [ f!!a; ??a j a 2 �g,R � Q � A
t � Q is the transition relation, q0 2 Q is an initial control state.
The label � represents the ability of performing an internal action, while !!a [??a]
represents the ability of broadcasting [receiving] a message a 2 �. Configurations
are undirected Q�M-graphs. A Q�M-graph 
 is a tuple hV;E; Li, where V is
a finite set of nodes, E � V �V is a finite set of edges (self-loops are forbidden to
model half-duplex communication), and L : V ! Q�M is a labeling function.

We use the notation u �
 v and say that the vertices u and v are adjacent to
one another in 
. We omit 
, and simply write u � v, when it is made clear by
the context. We use L(
) to represent the set of labels in 
. The set of all possible



configurations is denoted C, while C0 � C is the set of all initial configurations,
in which nodes always have the same label hq0; [℄i.

Given the labeling L and the node v s.t. L(v) = hq;mi, we define Ls(v) = q
(state component of L(v)) and Lb(v) = m (buffer component of L(v)). Further-
more, for 
 = hV;E; Li 2 C, we use Ls(
) to denote the set fLs(v) j v 2 V g.

For M = hM; del?; add; del; [℄i, an Asynchronous Broadcast Network (ABN)
associated to P is defined by its associated transition system T (P ;M ) = hC;)M; C0i, where )M� C � C is the transition relation defined next.

For 
 = hV;E; Li and 
0 = hV;E; L0i, 
 )M 
0 holds iff one of the fol-
lowing conditions on L and L0 holds: (local) there exists v 2 V such that(Ls(v); �; L0s(v)) 2 R, Lb(v) = L0b(v), and L(u) = L0(u) for each u 2 V n fvg;
(broadcast) there exists v 2 V and a 2 � such that (Ls(v); !!a; L0s(v)) 2 R,Lb(v) = L0b(v) and for every u 2 V n fvg if u � v then L0b(u) = add(a; Lb(u))
and Ls(u) = L0s(u), otherwise L(u) = L0(u); (receive) there exists v 2 V anda 2 � such that (Ls(v); ??a; L0s(v)) 2 R, del?(a; Lb(v)) is satisfied, L0b(v) =del(a; Lb(v)), and L(u) = L0(u) for each u 2 V n fvg. A local transition only
affects the state of the process that executes it, while a broadcast also adds the
corresponding message to the mailboxes of all the neighbors of the sender. Notice
that broadcast is never blocking for the sender. Receivers can read the message
in different instants. This models asynchronous communication. A reception of a
message a is blocking for the receiver whenever the buffer is empty or the visible
elements are all different from a. If a is visible in the mailbox, the message is
removed and the process moves to the next state.

An execution is a sequence 
0
1 : : : such that 
0 is an initial configuration,
and 
i )M 
i+1 for i � 0. We use )�M to denote the reflexive and transitive
closure of )M . Furthermore, we define the set of immediate predecessors of a setS of configurations as pre(S) = f
 j 
 )M 
0; 
0 2 Sg. We use pre� to indicate
the reflexive-transitive closure of pre.
Decision Problems The coverability problem parametric on the mailbox struc-
ture M is defined as follows. Given a protocolP with transition system T (P ;M ) =hC;)M ; C0i and a control state q, the coverability problem COVER(M ) states:
are there two configurations 
0 2 C0 and 
1 2 C such that 
0 )�M 
1 andq 2 Ls(
1)?
Preliminary Results When local buffers are treated as bags of messages the cov-
erability problem is decidable. For the proof, it is first possible to consider the
restricted case of fully connected topologies. For fully connected topologies, we
can then resort to the theory of well-structured transition systems (wsts) [1,10]
and show that reachability of a given control state can be solved via a symbolic
backward search algorithm. When mailboxes are ordered buffers, we obtain un-
decidability already in the case of fully connected topologies. Indeed, by using
FIFO mailboxes, we give nodes the possibility of recognizing communication
with multiple neighbors with the same role. We cannot use this feature to de-
fine discovery protocols as for the undecidability proof of synchronous broadcast
given in [5], but we can simulate a counter machine by using FIFO mailboxes as
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circular queues for encoding counters and to block computations which may lead
to incorrect results. The coverability problem becomes decidable when introduc-
ing non-deterministic message losses. We can exploit again the theory of wsts for
this positive result. In an extended model in which a node can test if its mail-
box is empty, we obtain undecidability with unordered bags and fully-connected
topologies. We cannot rely on queues anymore to distinguish bad computations,
but the emptiness test allows us to do it anyway. Detailed proofs of these results
are available in the technical report [6].

Related Work Our analysis completes previous work on verification and expres-
siveness (w.r.t. coverability) of broadcast communication. More specifically, for
synchronous broadcast communication, the coverability problem is decidable for
fully connected graphs [8] and undecidable for arbitrary graphs in the AHN
model of [5]. Broadcast in AHN is topology-dependent. Synchronous communi-
cation is used here to implement a discovery protocol that, by a careful control
of interferences, allows individual nodes to infer precise information about their
vicinity (e.g. the existence of one and only one neighbor with a certain role).
The discovery protocol is a building block for more complex computations. In
this paper we use similar ideas but reductions of different nature to obtain un-
decidability (e.g. we encode counters using mailboxes and not by using linked
structures).

For variations of the synchronous semantics like those proposed in [11], inter-
mittent nodes and non-atomic broadcast, coverability becomes decidable. The
decidability results exploit however different proof techniques. Indeed, coverabil-
ity with intermittent nodes can be decided by using a weaker model than Petri
nets, whereas we need to resort to the theory of wsts with nested data structures
(bags of tuples containing multisets) to show decidability for the unordered case.
There seems to be no direct reduction from one model to the other. Furthermore,
by either introducing �-transitions or moving to the case of ordered mailboxes
we obtain undecidability of the resulting model. Concerning other models of
broadcast communication, we would like to mention the CBS process calculi by
Prasad [14,15] for fully connected networks with synchronous broadcast commu-
nication, the !-calculus by Singh et al. [16,17] for fully connected networks with
synchronous broadcast communication, and the model with topology-dependent
broadcast by Ene and Muntean [7]. More recently, a process algebra for dif-
ferent types of communication, including asynchronous broadcast, called AWN,
has been proposed in [9]. Semantics that take into consideration interferences
and conflicts during a transmission have been proposed in [13,12]. Verification
of unreliable communicating FIFO systems have been studied in [2,3]. In [4]
the authors consider different classes of topologies with mixed lossy and perfect
channels [4]. Differently from all the previous works, we consider here coverability
for parametric initial configurations for a distributed model with asynchronous
broadcast. Furthermore, we also consider different policies to handle the message
buffers (bags/queues) and as well as unreliability of the communication media.

Concerning possible refinement of the unordered case, we are currently con-
sidering an extension with identifiers where each node has a unique identifier

3



that can be passed using broadcast messages and compared with equality. The
introduction of the extended semantics with identifiers and value passing and
the formal analysis of the coverability problem is left for an extended version of
the work.
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