
Service Interaction Contracts as Security Policies

Davide Basile

Dipartimento di Informatica, Università di Pisa, Italy
basile@di.unipi.it

http://www.di.unipi.it/~basile/

Abstract. We outline a methodology to check the compliance of ser-
vice orchestration with respect to service contracts. The contract of a
service is expressed by a finite state automaton, while the traces of the or-
chestration form a context-free language. A contract asserts the security
policy controlling resource accesses, including accesses to the communi-
cation channels, so making manifest also the client-service interactions.
The key idea of the methodology is controlling both access control and
compliance by an appropriate model-checking technique. Our approach
naturally deals with multi-party contracts.

Keywords: service contracts, compliance, model checking usages

1 Introduction

In Service-Oriented Computing (SOC), applications are built by combining dif-
ferent distributed components, called services. Standard communication proto-
cols are used for the interaction between the parties. Service composition depends
on which information about the services is made public. Security issues can make
more complex service composition, since a service can impose constraints on the
interactions it can hold. Also, the descriptions of services lack semantic infor-
mation. Behavioral contracts have been introduced to describe the external ob-
servable behavior of a service, and can be used for guaranteeing progress. This
property ensures that the whole system will never get stuck, i.e. all the compo-
nents are able to successfully terminate their tasks. We consider two different
paradigms for describing contracts. The contracts of Castagna et al. [3, 4] take
the form of CCS processes and permit to describe if the interaction between two
parties terminates or gets stuck, and when a service can be replaced with a more
general one. Instead Bartoletti et al. [1, 2] introduce a core calculus for services
that extends the λ-calculus with primitives for composing services in a call-by-
contract fashion under security properties. They develop a static technique for
extracting the abstract behaviour of a service (called History Expression) that
must obey the security policies. An orchestration machinery constructs a plan,
i.e. a binding between requests and services guaranteeing that the security prop-
erties are always satisfied.
We extends History Expressions to include channel communications and inter-
nal/external choice for combining the notions of security access and progress of



2 Davide Basile

interactions, so merging and enriching the above surveyed approaches. We prove
that compliance between client and server is a safety property. The main nov-
elty of our approach lies in exploiting standard techniques of model checking for
controlling compliance of behavioural contracts. Also differently from [1–3] we
manage both multi-party contracts and sessions. Due to lack of space, we cannot
compare in more detail the vaste existing literature in this field, and refer the
interested reader to [6].

2 Programming Model and Verification

History Expressions (HE) are a suitable process calculus through which we
abstractly describe services. Beside the standard operations of process calculi,
namely I/O operations, prefixing, concatenation, guarded (tail) recursion, a His-
tory Expression H contain access events α, and two non-deterministic choice op-
erators. The external choice

∑
i∈I ai.Hi proceeds according to a value received on

channel ai from the external environment; while internal choice
⊕

i∈I ai.Hi de-
scribes a service that internally decides whether to continue with one of the sum-
mands ai.Hi. Additionally, HE have the framing ϕLHM specifying that the policy
ϕ must be enforced in H. A policy is an FSA that recognizes strings of access
events. An example of safety policy ϕ is “never perform write actions(αwrite) af-
ter read actions(αread)”. A trace that violates this policy is αreadαwrite. Finally,
HE describe the opening and closing of a session by the expression openr,ϕHcloser,
where r represents the unique identifier of the request (i.e. a point in the ab-
stract syntax tree of H) and ϕ is the policy that the responding service must
obey. Inside the session, two services can synchronize on I/O actions. Two ser-
vices are compliant if for every output action the other party is ready to perform
the corresponding input action. Every services is published at a location `. An
orchestrator statically creates a plan π which is a binding between the request r
and the location of the service choosen for opening the session. Only two services
are involved in a session. Nested sessions are possible, since a service involved in
a session can open a new session with another service. A plan π is valid if the
two services are compliant and the server does not violates the policy ϕ. Finally
a network N is the parallel composition of different services and sessions.
The operational semantic is defined by a transition system. The configurations
of a network have the form R � N , where R is a set of services and N is the
active network, i.e. the active clients and services. The set R is partitioned into
two parts: (1){`i : Hi}?i∈1...k is the set of stand-by available services that can be
invoked with a openr,ϕ operation and (2){`i : Hi}!i∈1...k′ is the set of busy ser-
vices, which are involved in sessions. To help intuition, we work out the following
running example. Consider the services:

H1 = a · (open2,ϕ2
d.(e+ f) close2) · (b⊕ c) · d H2 = β · d.(e⊕ f) · α

H3 = a.g H4 = open1,ϕ1
a.(b+ c) close1 H5 = open3,ϕ3

a.g close3

We can see that H2 performs the access events α, β. Let ϕ2 say “never β after
α”, while the actual definitions of ϕ1 and ϕ3 is immaterial. By abuse of notation,



Service Interaction Contracts as Security Policies 3

when it is clear from the context, we indentify a service with the location where
it is running. Let the initial configuration of the network be:

{`1 : H1, `2 : H2, `3 : H3}? ∪ {}! � `4 : H4‖`5 : H5

Assume that the orchestrator plan is of the form π =
⋃

i∈{1,2,3}(ri, `i). We can
see that all the services are compliant and `2 respects the policy ϕ2. Suppose
now that `4 fires the open1,ϕ1

operation, we have:

{`2 : H2, `3 : H3}? ∪ {`1 : H1}! � [`4 : a.(b+ c) close1, `1 : ϕ1LH1M]‖`5 : H5

Now `1 is engaged in the session with the service `4, because π(r1) = `1. The
service `1 is marked busy in R and its behaviour is checked against ϕ1. The
service `5 opens a new session, and the resulting configuration becames:

{`2 : H2}? ∪ {`1 : H1, `3 : H3}! � [`4 : . . . , `1 : . . .]‖[`5 : a.g close3, `3 : ϕ3LH3M]

There are two parallel sessions. The services `5 and `3 will synchronize on the
channels a and g so that `5 closes the session and terminates, restoring `3 to its
initial state as an available service. Then `1 and `4 synchronize on channel a:

{`2 : H2, `3 : H3}? ∪ {`1 : H1}! � [`4 : (b+ c) close1, `1 : open2,ϕ2
. . .]

The service in `3 turns back to available service. Now `1 opens a new session
with `2 while `4 is waiting:

{`3 : H3}? ∪ {`1 : H1, `2 : H2}! � [`4 : . . . , [`1 : . . . , `2 : ϕ2LH2M]]
This is a nested session: `1 and `2 synchronize, note that ϕ2 is respected. Even-
tually `1 closes the session:

{`3 : H3, `2 : H2}? ∪ {`1 : H1}! � [`4 : (b+ c) close1, `1 : (b⊕ c) · d]

Here `4 will receive the input on channel b or c and it will close the session. We
can see that `1 could receive another message on channel d, but since the session
is closed it gets back to its initial state. The final configuration is:

{`1 : H1, `2 : H2, `3 : H3}? ∪ {}! � ε

For generating a valid plan we perform three steps. The first two find the compli-
ant services for each request and check if the selected service respects the policy ϕ
imposed by the client. For checking compliance of a given client with a sub-term
of the form openr,ϕH1closer and an available service `2 : H2; we calculate a pro-
jection ofH1 andH2 on their communication actions; operationally we remove all
the policies ϕ, all the access events α and all the sub-terms openr′,ϕ′ . . . closer′

nested in H1 and H2. Then, we make the product automaton A of the resulting
transition systems. We only have finitely many states in A. We fully characterize
compliance of services by checking in each state that the client has not termi-
nated and for all the possible output actions that a service is ready to fire, the
other party is ready to perform the corresponding input action. We also check
that at least one of the two services can perform one output. It turns out that
compliance is an invariant property: a subset of the safety properties [5]. Now
H1 and H2 are compliant if and only if the language of the product automaton
A is empty: no final states exist in which the above condition do not hold. We
also have to check if the choosen service respects the policy ϕ. For doing so we



4 Davide Basile

discard all the communication actions (possibly transforming ⊕ in +). Finally,
an important property is that a History Expression H is valid under a policy ϕ
if and only if JHK∩ JϕK = ∅, i.e. if and only if the languages JHK of the traces of
access events of H and JϕK of the offending traces of ϕ do not intersect. Since
JHK is context-free and JϕK is regular, and emptiness of a context-free language
is decidable, so is our problem. Indeed several algorithms and tools show this
approach feasible. The following example explains how to resolve the request
open2,ϕ2

occuring in H1 of our running example. The projection of H2 on his

communication actions give raise to the service d.(e⊕f). The product automaton
d.(e+ f)⊗ d.(e⊕ f) has three states: {〈d.(e+ f), d.(e⊕ f)〉, 〈e+ f, e⊕ f〉, 〈ε, ε〉}.
The set of final states is empty: no state satisfies the conditions described above.
Recall that ϕ2 says “never β after α”, the projection of H2 on the access events
give raise to the service β ·α, we have Jϕ2K = {Σ∗αΣ∗βΣ∗} and Jβ ·αK = {β ·α}
and the intersection is trivially the empty language, therefore the two services
are compliant and (r2, `2) ∈ π. Proceeding in this way, we generate the set of
compliant services for each request. Finally the third last step ensures that a
service never gets stuck while is waiting to opening a session. First we generate
a “locally”viable plan for each service. One of the compliant services for each
request is selected such that it will never be the case that two nested request
r1, r2 are resolved by the same service. For example, the following network has
no “locally”viable plan:

{`2 : a.(b+ c+ d+ e)}? � `1 : open1,−a.open2,−a.(b⊕ c)close2(b⊕ c⊕ d)close1
Indeed the service at `2 is compliant with both the request r1 and r2. The plan
π = {(r1, `2), (r2, `2)} is not locally viable for `1: the service at `2 will never be
available to open the session r2 since it is still involved in r1.
The algorithm for generating a locally viable plan for a service at every iteration
picks the outermost open/close subterm and selects one of the services compliant
with that request. Then it removes from the selected service the set of compli-
ant services of the nested open/close subterms. All the locally viable plans are
merged into a global plan. The tecnique we adopt consists in building the state
graph of the network and in checking that there are no cycles where a service is
able to open a session and it will never do it. Finally we plan to implementing
the algorithms outlined above in one of the existing model-checker.

References

1. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, Roberto Zunino: Call-
by-Contract for Service Discovery, Orchestration and Recovery. LNCS: 232-261.

2. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari: Planning and verifying
service composition. Journal of Computer Security 17(5): 799-837 (2009)

3. Giuseppe Castagna, Niel Gesbert, Luca Padovani: A Theory of Contracts for Web
Services. ACM TOPLAS, 31(5), 2009.

4. Giuseppe Castagna and Luca Padovani: Contracts for mobile processes. LNCS:
211-228 2009.

5. C. Baier and J.-P. Katoen: Principles of Model Checking. MIT Press, 2008.
6. Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, Roberto Zunino: Local

policies for resource usage analysis. (TOPLAS) 31(6) (2009).


