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In recent years (cf. [1, 3, 4]) a bridge between combinatorics on words and the
study of complexity of algorithms for the minimization of finite state automata
(acceptors) has aroused great interest. In particular, the study of combinatorial
properties of christoffel classes (or circular sturmian words) allowed to prove
that Hopcroft’s minimization algorithm becomes not ambiguous when applied
to the family of cyclic unary acceptors constructed by circular sturmian word.
Furthermore, for particular subfamilies the tightness is obtained.

In the field of combinatorics on words, increasing the cardinality of the letters
alphabet can give rise to new problematic questions. For example, for epistur-
mian words (cf. [5]) representing an extension to a larger alphabet of the notion
of infinite sturmian word, many of the crucial properties of such a family of
words, as the balancing, are lost. These considerations also hold when finite
combinatorial objects as circular words are considered.

We denote by (w) the circular word over the k-ary alphabet A corresponding
to all the conjugates of the word w. Given a circular word (w) a factor u is
called m-special if there exist exactly m distinct characters a1, a2, . . . , am in
the alphabet A, such that all uai are factors of (w) for each i = 1, . . . ,m.
Some families of circular words are able to capture many properties of classes of
infinite words. For instance, in the binary case, circular sturmian words inherits
the balancing from infinite sturmian words. Moreover each circular sturmian
word (w) admits a unique 2-special factor for each length up to |w| − 2. In [4, 2]
other structural characterizations have been also investigated.

Circular epichristoffel words, introduced in [8], are circular words that main-
tain some structural properties of episturmian words. More formally, we say that
(w) is a circular epichristoffel word if it is the image of a letter by an epistur-
mian morphism. One can prove that, for each length up to |w|−2, there exists a
unique special factor. In case of k-ary alphabet the problem of determining for
each 2 ≤ m ≤ k the maximal length of all m-special factors can be investigated.
Several properties of circular sturmian words can not be extended to circular
epichristoffel words and there are a lot of open problems connected to such a
family. Furthermore, the study of such a class seems to be connected to Fraenkel
conjecture.

In this paper we deal with the question of how the process of minimization of a
Moore automaton (cf. [7]) is influenced by the problems arising in combinatorics
on words when alphabets of size greater than 2 are considered. Note that for
such automata, differently from acceptors, the output alphabet is not binary.
In particular, we analyze the behavior of a variant of Hopcroft’s algorithm on a



family of unary cyclic Moore automata associated to circular epichristoffel words
and we relate the minimization process with particular factorization properties,
here introduced, of such words.

Given p = (p1, p2, . . . , pk) a k-tuple of non-negative integers, in [8] the author
gives an algorithm to determine whether a circular epichristoffel word, having p
as vector of occurrences of the letters, there exists and a construction is shown.
All the steps of the construction determine a sequence of letters, called directive
sequence, used to construct the circular epichristoffel word.

We prove that each letter ai of a k-ary alphabet A uniquely determines a
circular factorization of a circular epichristoffel word (w) defined over A in a set
Xai

containing k circular epichristoffel words. Such a factorization is induced by
the directive sequence. Let zai

(w) be the circular word obtained from (w) by
encoding by a1, a2, . . . , ak the occurrences of the correspondent elements of Xai

.
Let us denote by (i(w)) the circular epichristoffel word obtained by permuting
the letters of (w) such that the associated k-tuple is not increasing, i.e. p1 ≥
p2 ≥ . . . ≥ pk. We prove that the circular word (i(zai

(w)), denoted by Lai
(w), is

a circular epichristoffel word. Therefore, we can associate to each epichristoffel
word (w) a k-ary tree τ(w), called reduction tree, defined as follows.

– If w is a single letter ai, τ(w) is a single node labeled by (i(ai)) = (a1).
– If |w| > 1, τ(w) is a tree with root labeled by (i(w)) and at most k subtrees.

The i-th subtree is τ(Lai
(w)).

Figure 1 shows an instance of reduction tree of a circular epichristoffel word
and its correspondent factorizations. It is possible to prove that each circular
epichristoffel word is uniquely determined by its reduction tree, as stated in the
following theorem.

Theorem 1. Let (w) and (w′) be two circular epichristoffel words over the al-
phabet A = {a1, . . . , ak}. Then, τ(w) = τ(w′) if and only if (w′) = (w) (up to a
permutation of the letters).

Let (w) = (a1a2 . . . an) be a circular word over the alphabet A. The cyclic
automaton associated to (w), denoted by Aw, is a particular deterministic Moore
automaton (DMA) A = (Σ,A,Q, q0, δ, λ) in which Q = {1, 2, . . . , n} is the set
of states, Σ = {0} is the input alphabet, A is the output alphabet, δ is the
transition function defined as δ(i, 0) = (i + 1), ∀ i ∈ Q \ {n} and δ(n, 0) = 1.
The choice of q0 does not affect the minimization process. Moreover, λ : Q 7→ Γ
is a output function that assigns an output to the states of the automaton here
defined as λ(i) = ai for each i ∈ Q. See Figure 2(a) for an example.

In this paper we propose a minimization strategy (called L-Minimization

algorithm) for DMA that is variant of Hopcroft’s minimization algorithm, the
most efficient known minimization algorithm for acceptors (cf. [6]) that runs
in time O(n logn). It can operate on a generic deterministic Moore automaton
and it is based on two main ingredients. The first one is the notion of m-split
operation, defined as follows. Given a partition Π of Q, let C ⊂ Π , we say
that (C, a) m-splits the class B if there exist {Q1, Q2, . . . , Qm−1} ⊂ C such
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Fig. 1: The reduction tree τ (aabaaabaac). The circular word (aabaaabaac) can
be circularly factorized into circular epichristoffel words, as follows: (w) =
(a)(ab)(a)(a)(ab)(a)(ac), (w) = (aacaab)(aaab), (w) = (aabaaabaac). Such factoriza-
tions are coded by the circular epichristoffel words (abaabac), (ca) and (c), respectively.
Consequently, La(w) = (abaabac), Lb(w) = (ab), Lc(w) = (a). Analogously, the other
factorizations can be determined.

that δ−1

a (Qi) ∩ B 6= ∅ and B * δ−1

a (Qi), with i = 1, . . . ,m − 1. In this case
the set B can be, obviously, split into Bi = δ−1

a (Qi) ∩ B, with i = 1, . . . ,m −
1 and Bm = B \

⋃
i=1,...,m−1

Bi. The pairs (C, a) are stored and successively
extracted from an auxiliary data structure W , called waiting set. The second
ingredient is the all but not the largest strategy instead of smaller half strategy
of the classical Hopcroft’s minimization algorithm. In particular, we store into
the waiting set W all but not the largest sets obtained from the m − split as
the (m − 1)-tuple (C, a). Such a strategy is applied throughout the algorithm,
starting with the first step in which the set Q of states is split into classes of
states having the same output function λ and this is fundamental in order to
obtain the minimal automaton. The successive split operations and insertions
into W could be execute by the smaller-half strategy where 2-splits can occur.
Also in this case the minimal automaton is produced. Although, in general,
L-minimization is not deterministic, we show that there is an infinite family
of automata for which, differently from smaller-half strategy, it has a unique
execution, as stated in the following theorem.

Theorem 2. The execution of L-Minimization algorithm on cyclic automata
associated to circular epichristoffel words is unique.

Such a result can be proved by using the fact that a m-split occurs in correspon-
dence with m-special factor of the circular word.

However, it is possible to verify that there exist infinite families of Moore
automata for which the executions of our algorithm are better than some ex-
ecutions of the smaller-half minimization strategy and vice-versa. It could be
interesting to study the tightness and the average time complexity of the two
methods.

The refinement process produced during each execution of the algorithm on
a generic Moore automaton A, can be represented by a k-ary tree T (A), also
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Fig. 2: (a) Cyclic automaton Aw for (w) = (aabaaabaac); Σ = {0}, A = {a, b, c},
λ(1) = λ(2) = λ(4) = λ(5) = λ(6) = λ(8) = λ(9) = a, λ(3) = λ(7) = b, λ(10) = c. (b)
The derivation tree T (Aw).

called derivation tree, whose nodes are labeled by classes of the partitions and
their descendants are the classes produced by the m-split operations. See Figure
2(b) for an example. Note that, in general, the shape of the derivation tree is
strongly affected from the non-deterministic choices of minimization algorithm,
although the leaves are the same.

The following theorem establishes a relationship between derivation trees and
reduction trees.

Theorem 3. If (w) is a circular epichristoffel word then T (Aw) and τ(w) are
isomorphic.
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