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Abstract. Mobile membranes with delays represent a biological inspired
formalism able to model systems involving timing, explicit locations and
mobility. We define a number of behavioural equivalences over this for-
malism, and prove some relationships between these equivalences.

1 Introduction

During the last years, membrane computing [3, 6] has been applied to Biology. It
may have an important impact in understanding how biological systems work,
giving also a way to describe, manipulate, analyse and verify them. Behavioural
equivalence is an important concept in biology needed for analysing and com-
paring the organs behaviour. For example, an artificial organ is the functional
equivalent of the natural organ, meaning that both behave in a similar manner.

Using mobile membranes, we are interested either in locations, times of evo-
lution, mobility objects, or in combinations of these concepts. Thus we define
several equivalences, showing that some of them are finer that others, and that
some of them are incomparable. Defining several equivalences, we offer flexibility
in selecting the right one when verifying biological systems and comparing them.

What we do in this paper is a first step towards establishing the formal frame-
work used in software verification for biological systems sensitive to timeouts.

2 Systems of Mobile Membranes with Delays

Systems of simple mobile membranes [4] are a particular class of membrane com-
puting [6], while several types of mobile membranes were studied in detail in [2].
We use a rule-based model of computation called systems of mobile membranes
with delays in order to model complex biological processes.

Definition 1. A system of mobile membranes with delays is a construct
Π = (Ot, H, µ, w1, . . . , wn, R), n ≥ 1 (the degree of the system), where:

1. Ot = O×N is a set of objects with delays, where O is an alphabet of objects,
and (a, ta) ∈ Ot represents an object a together with its delay ta ≥ 0;
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2. H is a finite set of labels for membranes;
3. µ ⊂ H ×H describes the membrane structure, such that (i, j) ∈ µ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
4. w1, w2, . . . , wn are multisets over Ot, describing the initial multisets of ob-

jects with delays placed in the n regions of µ;
5. R is a finite set of evolution rules of the following forms, where h,m ∈ H,

(a, 0), (a, 0), (c, tc), (b, tb), (a, ta), (a, ta − 1) ∈ Ot:

(a) [ (a, 0)]
h
[ (a, 0)]

m
→ [ [ (c, tc)]h(b, tb)]m endocytosis

an elementary membrane h containing (a, 0) enters membrane m con-
taining (a, 0); (a, 0) is rewritten to (c, tc), and (a, 0) is rewritten to (b, tb);

(b) [ [ (a, 0)]
h
(a, 0)]

m
→ [ (c, tc)]h[ (b, tb)]m exocytosis

an elementary membrane h containing (a, 0) exits membrane m contain-
ing (a, 0); (a, 0) and (a, 0) are rewritten to (c, tc) and (b, tb), respectively;

(c) [ (a, 0)]
h
→ [ (c, tc)]h[ (b, tb)]h elementary division

if containing (a, 0), a membrane h is divided into two membranes with
the same label m, and (a, 0) is rewritten to (b, tb) and (c, tc);

(d) [ (a, ta)]h  [ (a, ta − 1)]h delay decrementing
if ta > 0 then (a, ta) placed inside membrane h is rewritten to (a, ta−1).

In terms of computation, we are working with membrane configurations (ranged
over by M,N, . . . ) and with the free monoid O∗t (ranged over by ut, vt, . . . ).

Definition 2. The set M(Π) of membrane configurations in a membrane sys-
tem Π is inductively defined as follows:

• if i ∈ H and ut is a multiset over Ot then 〈i;ut〉 ∈ M(Π); 〈i;ut〉 is called
an elementary membrane configuration;

• if i ∈ H, M1, . . . ,Mn ∈ M(Π), n ≥ 1, and ut is a multiset over Ot then
〈i;ut, M1 . . .Mn〉 ∈ M(Π); 〈i;ut, M1 . . .Mn〉 is a composite membrane.

Definition 3. For a membrane system Π, if M,N ∈M(Π) then:

• M reduces to N (denoted by M 7→ N) if there exists a rule in R, applicable
to membrane M such that we can obtain membrane N . We use 7→ to stand
for both → and  . We denote by  n a sequence of n ≥ 1 reductions  .

3 Behavioural Equivalences

These equivalence relationships are useful when checking the “healthiness” of a
system. For example, take two healthy systems M and N that are in a relation-
ship of barbed bisimulation. If they are both infected with a virus and evolved
into M ′ and N ′, through the barbed bisimulation, it is easy to check if they are
infected with a virus of the same kind (each virus has an unique behaviour and
is activated by an unique trigger).

In what follows, in order to distinguish between normal and abnormal be-
haviours, we define various barbed bisimulation as in [5], and specify first what
is observable. To emphasize the mobility aspects, the objects involved in endo-
cytosis and exocytosis rules are observable.



To avoid ambiguity, we consider that the objects involved in endocytosis and
exocytosis rules belong to the sets of objects Oexo and Oendo, respectively, such
that Oexo ∈ Ot, Oendo ∈ Ot and Oendo∩Oexo = ∅. In what follows, let x ∈ {endo,
exo} represent the possible movements, u′t, u

′′
t arbitrary multisets of objects with

delays, N,M,M ′ configurations, and m ∈ H a membrane label.
A barb predicate ↓x(a) (↓x(a)@m, ↓tax(a), ↓

ta
x(a)@m) is defined by the rule:

M ↓x(a) (M ↓x(a)@m, M ↓tax(a), M ↓
ta
x(a)@m, respectively)

iff M ≡ 〈m; (a, ta) ] u′t, N〉 ‖M ′, where a ∈ Ox.

Definition 4. A barbed bisimulation S in terms of mobility is a symmetric bi-
nary relation over membrane configurations such that for all (M,N) ∈ S, n ∈ N
1. if M ↓x(a), then N ↓x(a) for any barb predicate ↓x(a);
2. if M  n→M ′, then exists N ′ such that N  n→ N ′ and (M ′, N ′) ∈ S.

Two membrane configurations are barbed bisimilar, in terms of mobility, denoted
M ∼mob N , if and only if (M,N) ∈ S for some barbed bisimulation S.

It is rather natural to strengthen the observing power of the previous de-
fined barbs by allowing the observer to look also at the label (location) of the
membrane containing the object that facilitates a movement.

The barbed bisimulation ∼Lmob, in terms of location and mobility, is de-
fined similarly with the barbed bisimulation ∼mob, by using the barb predicate
↓x(a)@m. This bisimulation compares membrane configurations by looking also
at the label of the membrane containing an object that facilitates a movement.

Bisimulation relations are represented and studied as sets of pairs of mem-
brane configurations. Thus the comparison between bisimilarities are set-theoretic.

Proposition 1 (∼mob≺∼Lmob). The located barbed bisimulation is strictly finer
than the barbed bisimulation:

1. ∼mob�∼Lmob ⇔ ∀M,N , if M ∼Lmob N then M ∼mob N ;
2. ∼Lmob 6�∼mob ⇔ ∃M,N , s.t. if M ∼mob N then M 6∼Lmob N .

Proof (Sketch).

1. The located observer (i.e., the located barb) can distinguish in both mem-
brane configurations the same object a placed inside the same membrane
m facilitating a movement, and so the located barb implies the simple barb
(M ↓x(a)@m implies M ↓x(a)).

2. We give the following counterexample: Take two membrane configurations M
and N , and an object a ∈ Oexo s.t. M = 〈l; (a, ta)]u′t〉 and N = 〈k; (a, ta)]
u′t〉 with l 6= k. Both M ↓exo(a) and N ↓exo(a) hold, and thus the two mem-
brane configurations are barbed bisimilar: M ∼mob N . However M ↓exo(a)@l

and N ↓exo(a)@k also hold, and l 6= k; therefore M 6∼Lmob N . ut

The bisimulation ∼Dmob is defined similarly with the bisimulation ∼mob, by
using the barb predicate ↓tax(a). It relates membrane configurations with the same

objects that execute the same movements and have the same delays.



Proposition 2 (∼mob≺∼Dmob). The delayed barbed bisimulation is strictly finer
than the barbed bisimulation:

1. ∼mob�∼Dmob ⇔ ∀M,N , if M ∼Dmob N then M ∼mob N ;
2. ∼Dmob 6�∼mob ⇔ ∃M,N , s.t. if M ∼mob N then M 6∼Dmob N .

The bisimulation ∼DLmob is defined similarly with the bisimulation ∼Dmob,
by using the barb predicate ↓tax(a)@m. It relates membrane configurations with the

same objects located in the same membranes that execute the same movements
and have the same delays.

Proposition 3 (∼Lmob≺∼DLmob). The delayed located barbed bisimulation is
strictly finer than the located barbed bisimulation:

1. ∼Lmob�∼DLmob ⇔ ∀M,N , if M ∼DLmob N then M ∼Lmob N ;
2. ∼DLmob 6�∼Lmob ⇔ ∃M,N , s.t. if M ∼Lmob N then M 6∼DLmob N .

The four barbed bisimulations form a lattice in which a directed edge means
“is strictly finer”: ∼DLmob

∼Dmob ∼Lmob

∼mob

4 Conclusion

A small difference in the behaviour of a biological system could lead to a disease.
Such a difference could appear because of the involved elements, their location,
their actions and timing. The behavioural equivalences introduced in this paper
could make the distinction between “normal” and “abnormal” behaviours, em-
phasizing also the elements by which behaviours differ. During the presentation,
some biological examples will illustrate the use of these bisimulations.

As future work, we are interested in theoretical investigation of other be-
havioural equivalences and their applicability to Systems Biology. Other be-
havioural equivalences (other than bisimulations) can also be considered: trace
equivalences, barbed congruences and testing equivalences.
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3. Ciobanu, G., Păun, Gh., and Pérez-Jiménez, M.J., eds. 2006. Applications of
Membrane Computing. Springer.
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