
Hoare Logic for Multiprocessing

Marina Lenisa and Daniel Pellarini

UNIUD, Italy

marina.lenisa@uniud.it,daniel.pellarini@gmail.com

In the traditional approach of Hoare logic, the operational semantics of concurrent pro-
grams is explained via the interleaving transition rule. This reflects the execution on
a single processor, where atomic actions of parallel components are interleaved and
sequentially executed, and it does not directly account for multiprocessing systems.

Here we depart from the traditional approach, and we introduce a new parallel op-
erator whose operational semantics directly reflects the execution on a multiprocessing
system, where disjoint atomic actions of program components are executed in parallel.

Then, we develop a technique for verifying concurrent programs in this setting,
inspired by the traditional Owicki-Gries method, see e.g. [ABO09]. In the multipro-
cessing setting, the above technique substantially simplifies, by only requiring local in-
terference freedom, in place of global interference freedom between the proof outlines
of parallel components. We plan to implement a tool for the verification of the local
interference freedom; this could then be used in combination with a tool for verifying
sequential components, such as Why3 [BFMMP12], for verifying concurrent programs.

Coalgebraically (or game-theoretically), the new parallel operator can be interpreted
as a kind of conjunctive sum, where each action consists of concurrent actions in more
components. More in general, it would be interesting to explore what kind of parallelism
corresponds to notions of sums alternative to the interleaving sum, which arise in the
theory of coalgebras and games, [Con01, HL11, HLR11].

The Language.
We focus on the language for parallel programs with synchronization Lpar, whose syn-
tax is defined as follows:

Definition 1 (Syntax).
(Lpar 3)S ::= skip | x := t | S1; S2 | await B then S end | if B then S1 else S2 fi |

while B do S1 od | [S1 ||| . . . ||| Sn]
where

– x, y, . . . are variables;
– t is an expression built over a standard language for integer and boolean expres-

sions;
– B is a boolean expression;
– programs not containing the ||| operator are called (sequential) components;
– the program S in the conditional atomic section await B then S end contains

neither the ||| operator nor while subprograms;
– the components S1, . . . , Sn in the parallel composition [S1 ||| . . . ||| Sn] do not

contain the ||| operator.

We assume an abstract level of granularity of our language, so as skip, assignment,
and the evaluation of an if/while-guard are considered as atomic actions, as well as
conditional atomic sections. The latter is executed in mutual exclusion, i.e. the guard
B of a command awaitB thenS end is evaluated in the current state and, if it is true,
then S is executed atomically with the evaluation of B, and in mutual exclusion.

Formally, the transition system of the language Lpar is defined by a set of rules
for deriving judgements of the shape 〈S, σ〉 → 〈S′, σ′〉, where σ ∈ Σ is a state, i.e. a
function from variables to values. The transition system that we consider includes the
usual transition rules for the components (see [ABO09], Chapter 9), but it differs from
the standard one because the rule for interleaving is replaced by the rule for parallel
execution of atomic actions: at each step, in a parallel program [S1 ||| . . . ||| Sn], a
maximal set of disjoint atomic actions in the components is executed. Informally, two
components, S1 and S2, execute disjoint atomic actions if the variables modified in
the next atomic command/guard of each component are not used in the next atomic
command/guard of the other. That is no written variable can be shared in the actions
executed by the two components; conditional atomic regions cannot be executed in
parallel with any other component.

In the following, for states σ, τ and X set of variables, we denote by σ = τ mod X
the fact that the states σ and τ coincide on all variables but those in X .

Definition 2 (Parallel Transition Rule).
(i) Let τ1 = σ mod X , τ2 = σ mod Y , for X ∩ Y = ∅. We define the state τ1] τ2 by

(τ1] τ2)(x) =

σ(x) if x /∈ X ∪ Y
τ1(x) if x ∈ X
τ2(x) if x ∈ Y(ii) Parallel transition rule:

{< Si, σ > −→ < S′
i, τi >}i∈I

< [S1 ||| . . . ||| Sn], σ > −→ < [T1 ||| . . . ||| Tn],
⊎n

i=1 τi >

where {Si}i∈I is a maximal set of components executing disjoint atomic actions, and

Ti =

{
Si if i /∈ I
S′
i if i ∈ I .

With the above parallel transition rule we make two implicit assumptions. First,
we assume that the number of processors available is not bounded, or at least not less
than the maximum number of components which can execute disjointly. Possibly, one
can impose a limitation on the number of components which can execute in parallel,
according to the number of processors, but this will not change the theory, and hence,
for simplicity, we work without this assumption. The second implicit assumption is that
all atomic actions, being executed in parallel on different processors, have the same
“cost” in terms of execution time.

Notice that, the final states generated by computations arising with the interleaving
rule are in general more than those induced by computations arising with the paral-
lel transition rule. Namely, with the latter, maximal sets of disjoint atomic actions are
forced to be executed at each step, and hence not all interleaving executions are com-
patible. This will be exploited in order to simplify the verification of parallel programs.

2

Verification of Concurrent Programs.
The standard technique due to Owicki-Gries for the verification of concurrent programs
is based on the construction of standard proof outlines for the components, i.e. proof
outlines where each atomic command or atomic region is preceded by exactly one as-
sertion, and on the control of interference-freedom between these proof outlines. Intu-
itively, this latter step substantially simplifies in our multiprocessing setting, because
of the parallelism constraints. In the following, we propose a technique for verifying
concurrent programs in our setting. After having built standard proof outlines for com-
ponents in the usual way, we proceed as follows:

1. We build the graph of abstract computations of the parallel program; by an ab-
stract computation we mean a computation where we forget about the states, and
we only account for the sequence of programs that we reach by executing the orig-
inal program, and for the atomic actions/conditional section executed at each step
(see Definition 3 below). Each node in the graph of abstract computations repre-
sents a point in the parallel program reached during its execution, and it is labeled
by the sequence of corresponding assertions annotating the proof outlines of the
components. The arcs in the graph will be labeled by the sequence of atomic com-
mands/guards or by the conditional atomic action executed at that step. Notice that
the graph has a finite number of nodes.

2. Once the graph of abstract computations has been built, the proof of interference
freedom between the proof outlines of the components reduces to a local check of
non interference between the assertions labeling a node and the sequence of atomic
actions or the atomic section labeling the outgoing arcs.

The graph of abstract computations.

Definition 3 (Abstract Transition System and Computation).
(i) The abstract transition system consists of rules for deriving judgements S l−→ S′,
where l is a label representing (a sequence of) atomic commands/guards/sections or
the empty action ε (representing a computation that doesn’t perform any action in that
specific computation step), i.e.:

l ::= skip | x := t | B | ε | await B then S end | 〈l1, . . . , ln〉 .

The abstract transition rules are the following:

skip
skip−−−→ E x := t

x:=t−−−→ E S
ε−→ S

awaitB thenS end
awaitB thenS end−−−−−−−−−−−−→ E

S1
l1−→ S

′

1

S1;S2
l1−→ S

′

1;S2

if B thenS1 else S2 fi
B−→ S1 if B thenS1 else S2 fi

¬B−−→ S2

whileB doS od
¬B−−→ E whileB doS od

B−→ S;whileB doS od

3

{Si
li−→ S′

i}i∈I

[S
′

1 ||| . . . ||| Sn]
<l′1,...,l

′
n>−−−−−−−→ [S

′

1 ||| . . . ||| S
′

n]

where {Si}i∈I is a maximal set of components executing disjoint atomic actions and

l′i =

{
li if i ∈ I
ε if i 6∈ I .

(ii) An abstract computation is a (finite or infinite) sequence S l1−→ S1
l2−→ . . .

ln−→ Sn . . .

Notice that in all abstract computations, even the infinite ones, only finitely many
different programs can appear.

Now we sketch how to define the (finite rooted) graph representing the abstract
computations generating from a program S = [S1||| . . . |||Sn]. Each node n repre-
sents a point in the computation of S, and it is labeled by the n-tuple of assertions
〈p1j1 , . . . , p

n
jn
〉 appearing in the proof outlines at that point. The construction of the

graph starts from the root n, which is labeled with the initial assertions, and proceeds
by analyzing, for each created node n′, the abstract transitions arising from the corre-

sponding program [S′
1 ||| . . . ||| S′

n]: for each transition [S′
1 ||| . . . ||| S′

n]
<l1,...,ln>−−−−−−−→

[S′′
1 ||| . . . ||| S′′

n], a new node n′′ is built, if it does not already exists, corresponding
to [S′′

1 ||| . . . ||| S′′
n], and an arc is drawn from n′ to n′′, labeled by 〈l1, . . . , ln〉. Some

optimizations can be performed during the graph construction, by avoiding to represent
transitions corresponding to the evaluation of a guard which is not compatible with the
current assertions.

Local interference freedom. Once the graph of abstract computations has been built,
the non-interference checks can be performed at a local level. That is, for any node n,
for any outgoing arc and any atomic action appearing in its label and in the proof outline
of a component, it is sufficient to check that this atomic action does not interfere with
the assertions of the node n, which appear in the proof outlines of other components.

Coalgebraically, this new parallel operator can be interpreted as a kind of conjunctive
sum, where each action consists of concurrent actions in more components. This is
currently being studied as a natural continuation of this work.

References
[ABO09] K. Apt, F. de Boer, E. Olderog. Verification of Sequential and Concurrent Pro-

grams, Springer, 2009.
[BFMMP12] F. Bobot, J-C. Filliâtre, C. Marché. G. Melquiond, A. Paskevich, The Why3 Plat-

form, Version 0.72, May 2012, available at http://why3.lri.fr/#documentation.
[Con01] J.H. Conway. On Numbers and Games, A K Peters Ltd, 2001.
[HL11] F. Honsell, M. Lenisa. Conway Games, algebraically and coalgebraically, Logical

Methods in Computer Science 7(3), 2011.
[HLR11] F. Honsell, M. Lenisa, R. Redamalla. Equivalences and Congruences on Infinite

Conway Games, Theoretical Informatics and Applications 46(2), 231–259, 2012.

4

