
Input/Output Types for Dynamic Web Data
(Extended Abstract)

Svetlana Jakšić

Faculty of Technical Sciences
University of Novi Sad
sjaksic@uns.ac.rs

As information networks become more open and dynamic, the need for protecting
security and privacy of data is increasingly important in many fields of human activities.
Systems must be able to exchange data and processes while preserving security. In case
we are given a target security policy for a distributed system containing XML data, how
can we check weather the system behaves according to the policy? One solution is to
suitably annotate the security relevant events, to classify them according to a type sys-
tem and to verify security properties by typing. In [3] we introduced rXdπ-calculus, a
calculus for role-based access control of dynamic web data, and a type system for it and
we verify the security properties by typing. Here, a subtyping relation which extends
the type system for rXdπ is proposed.

First, an example which illustrates the proposed approach and advantages of the ex-
tended type system will be given and then a brief presentation of the subtyping relation
and a discussion of the related work. The full presentation of rXdπ-calculus and the
corresponding type system, which can be found [3], will be omitted here.

An example

Let us consider a simple distributed system consisting of code running on behalf of four
principals: an online discussion forum, a guest, a member and the moderator. Let the
forum, written in XML notation, have the shape:

< forum >
< general >

forum rules
< /general >
< music >

lyrics
< /music >

< /forum >

The forum contains two main topics: the general and the music. In order to describe
the behaviour of the guest, the member and the moderator we will use process calcu-
lus notation. In the syntax of rXdπ-calculus we consider four kinds of processes: π-
calculus processes [7], for modelling local communication; go command, for modelling
process migration between locations, as in Dπ calculus [6]; run, read and change

commands and for modelling interaction of processes with local data in place of the

update command of [5] and commands enable and disable for changing permis-
sions to access data. We write readforum/general(χ) for a guest wishing to read forum
rules, where χ is a data pattern he is looking for, and readforum/music(χ) for a member
wishing to read the lyrics. The process !b(y).changeforum(x, x|y) represents the mod-
erator of the forum who has the ability to add a new topic. The moderator receives the
new topic, updates the forum with it and waits to receive the next topic. In [3] we have
investigated a system in which different participants can have different rights. We have
achieved diversity and control of the rights by introducing role-based access control.
More precisely, each tag is assigned a set of roles that a process is required to have in
order to access it. The forum of this example decorated with sets of roles is:

< forum role = guest >
< general role = guest >

forum rules
< /general >
< music role = member >

lyrics
< /music >

< /forum > .

The same forum written in the syntax of our calculus is:

forum{guest}[general{guest}[forum rules]|[music{member}[lyrics]].

Let the roles guest, member and moderator belong to a countable set of roles which
is a lattice for a partial order v. We consider guest v member v moderator.
As expected, we assign the role guest to the unregistered guest of the forum, the
role member to the registered user and the role moderator to the moderator of the
forum. We say that the tag (or the edge when we use tree representation of XML
documents) forum is accessible to the process with role guest or higher. The path
forum/general is accessible to the process with the role guest since both tags are
accessible to it, while the path forum/music is not. The forum we have described
here is a “wiki” forum that allows guests and members to add content to the parts
they have access to, as on an Internet forum, but also allows them to edit the con-
tent. All processes belonging to the same role have the same rights. Locations con-
tain the processes and data. The behaviour of all the principals in the system is con-
trolled with location policies and type system introduced in [3]. The policy of a loca-
tion regulates changes of access rights. For example, if the forums’ location policy is
({guest}, {({moderator}, guest)}, {({moderator}, member)}) then the processes
with a role lower then guest can not access the forum at all and that the moderator
may allow guest to access more topics or ban members to access the some topics in
the forum. The dynamic change of access rights to data is done by adding or removing
roles from the sets of roles on the data tree edges. The type system checks if a data tree
and a process conform to a given location policy.

We propose an extension of the type system of [3] with subtyping relation in order
to describe richer behaviour in our model. In the forum example, the process

b̄〈new{guest}[· · ·]〉q{guest} | b̄〈new{member}[· · ·]〉q{member}
| !b(y).changeforum{moderator}(x, x|y)q{moderator}

which represents a guest and a member, both wishing to send a new topic to the mod-
erator for approval, is rejected by the type system of [3]. However, with the proposed
subtyping relation, this process is typable.

Subtyping relation

We assume a countable set of roles R, and use r to range over elements of R. Let
(R,v) be a lattice and let ⊥,> ∈ R be its bottom and top element, respectively. By
α, ρ, σ we denote non-empty sets of roles and by τ, ζ sets of roles containing the >
element. We introduce a pre-order relation on value types in order to expand a domain
of values that channels can communicate. With this aim, we have enriched the set of
value types from [3] with the type of channels emitting values and with the type of
channels receiving values as in [8, 9]. The types are presented in Table 1. Tv ranges
over value types where as a value we consider either a channel name, a script, a location
name, a path or a tree.

Table 1. The Syntax of rXdπ Types

Ch(Tv) type of channels communicating values of type Tv
Ch!(Tv) type of channels emitting values of type Tv
Ch?(Tv) type of channels receiving values of type Tv
Loc(P) type of locations with the policy P
Script(P) type of scripts which can be activated at locations with the policy P
Path(α) type of paths having the last edge with the set of roles α
Pointer(α) type of pointers whose path is typed by Path(α)
Tree(P, τ, ζ) type of trees, which can stay at locations with the policy P , with initial

branches asking τ and which can be completely accessed by processes
with at least one role of ζ

Proc(P, ρ) type of pure processes, which can stay at locations with the policy P and
which can be assigned roles ρ

ProcRole(P) type of processes with roles which can stay at locations with the policy P

The subtyping rule
Γ ` v : Tv1 Tv1 ≺ Tv2

Γ ` v : Tv2

states that if Tv1 is subtype of Tv2, then a value of type Tv1 is also of type Tv2. The
subtyping relation is such that if a channel can communicate values of type Tv then it
can do both, emit and receive the values. Any channel that is receiving values of some
type can be regarded as a channel receiving higher values. Any channel that is emitting
values of some type can be regarded as a channel emitting lower values. The type of
a location with the policy P1 is lower then the type of a location with policy P2 if P2

is less restrictive then P1. If a script can be activated at a location then it can also be

activated at any bigger location. A path having the last edge with a set of roles α1 can
be regraded as having at last edge any set of bigger or equal roles to those from α1.
Suppose that we are given a tree that can stay at a location of some policy P, with
initial branches asking τ1 and that can be completely accessed by a process with at least
one role from ζ1. We can say that its initial branches are also asking set of roles that are
greater than or equal to ζ1 and it can be completely accessed by processes with roles
greater or equal to ζ1.

By extending the proof from [3], we can prove that the system satisfies the subject
reduction and other relevant properties of well behaved processes. We proved in [3] that
processes can communicate only values with at least one characteristic role lower than
equal to a role of the process. The subtyping relation implies that channels emitting
a value of type can also emit all the values that are of smaller type with respect to the
relation. The channels receiving values of a type can also receive values that have bigger
types.

Conclusions and related work

In this paper a notion of subtyping is added to the type system of the rXdπ-calculus
and it is demonstrated that subtyping increases the flexibility of types. The type systems
and calculi discussed here strongly relies on [3] and is most related to [4, 1] and [2].
Input and output types are those from [8, 9]

Acknowledgment. This work has been supported by the Serbian Ministry of Education
and Science (projects ON174026 and III44006) and Provincial Secretariat for Science
and Technological Development of Province of Vojvodina. ICTCS reviewers have pro-
vided useful comments.

References
1. Chiara Braghin, Daniele Gorla, and Vladimiro Sassone. Role-based access control for a dis-

tributed calculus. Journal of Computer Security, 14(2):113–155, 2006.
2. Adriana B. Compagnoni, Elsa L. Gunter, and Philippe Bidinger. Role-based access control

for boxed ambients. Theoretical Computer Science, 398(1-3):203–216, 2008.
3. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšic, and Jovanka Pantovic.

Types for Role-Based Access Control of Dynamic Web Data. In WFLP’10, volume 6559
of LNCS, pages 1–29. Springer, 2011.

4. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Jovanka Pantovic, and Daniele Varacca. Se-
curity types for dynamic web data. Theoretical Computer Science, 402(2-3):156–171, 2008.

5. Philippa Gardner and Sergio Maffeis. Modelling dynamic web data. Theoretical Computer
Science, 342(1):104–131, 2005.

6. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173(1):82–120, 2002.

7. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

8. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5):409–453, 1996.

9. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

