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1 Introduction

Picture languages generalize classical string languages to two-dimensional ar-
rays. Several approaches have been proposed during the years; consequently, a
general classification and a detailed comparison of the classes proposed turns
to be necessary. We studied in detail closure properties of (regular) pure 2D
context-free grammars (R)P2DCFG [1], and the complexity of the membership
problem [2].

2 Preliminaries

General definitions Let Σ be a finite alphabet. A two-dimensional array of
elements of Σ is a picture over Σ. The set of all pictures over Σ is denoted
by Σ++. For h, k ≥ 0, Σ(h,k) denotes the set of pictures of size (h, k), and
Σ∗∗ = Σ++∪λ, where λ is the empty picture. Conversely, if p ∈ Σ∗∗, we denote
by |p|row and |p|col, the number of rows and columns of p, respectively. The size
of p is the pair |p| = (|p|row, |p|col). As in the one-dimensional case, a picture
language is a subset of Σ∗∗. For 1 ≤ i ≤ |p|row, 1 ≤ j ≤ |p|col, the element of p
in the i-th row and j-th column is called a pixel and denoted by p(i, j).

Operations on picture languages Let Γ and Σ be two finite alphabets and
π : Γ → Σ a function between them, if p ∈ Γ (h,k), the projection of p by π
is the picture p′ ∈ Σ(h,k) such that p′(i, j) = π(p(i, j)), for all 1 ≤ i ≤ |p|row,
1 ≤ j ≤ |p|col. Projection naturally extends to languages. Row and column con-
catenations are partial operations on pictures denoted 	 and :, respectively. If
p, q ∈ Σ(h,∗) (resp. p, q ∈ Σ(∗,k)) p:q (resp. p	q) is the horizontal (resp. vertical)
juxtaposition of p and q. With pn: (resp. pn	) is denoted the horizontal (resp.
vertical) juxtaposition of n copies of p; p+: (resp. p+	) is the corresponding
closure. Concatenations also extend to languages.

Pure 2D Context-free Grammars Context free grammars which make use
of only terminal symbols (i.e., pure grammars) have been well investigated in
the theory of string languages. Pure 2D context-free grammars [3], unlike Matrix
grammars ([4,5]), admit rewriting any row/column of pictures with no priority of



columns and rows. Row/column sub-arrays of pictures are rewritten in parallel
by equal length strings and by using only terminal symbols.

Definition 1. A pure 2D context-free grammar (P2DCFG) is a 4-tuple G =
(Σ,P c, P r, S′) where:

1. Σ is a finite set of symbols;
2. P c = {ci | 1 ≤ i ≤ m} is the set of column rule tables, where a table ci is a

set of context-free rules of the form a→ α, a ∈ Σ, α ∈ Σ+ s.t. for any two
rules a→ α, b→ β in ci, |α| = |β| where |α| denotes the length of α.

3. P r = {ri | 1 ≤ i ≤ n} is the set of row rule tables, where a table ri is a set
of context-free rules of the form a → tα, a ∈ Σ, α ∈ Σ+ s.t. for any two
rules a→ tα, b→ tβ in ri, |α| = |β|.

4. S′ ⊆ Σ++ is a finite set of axioms.

For any two arrays p1, p2 ∈ Σ∗∗, p2 is derived from p1 in G, in symbols p1 ⇒ p2,
if p2 is obtained from p1 by either rewriting a column of p1 by applying to each
letter of the column a rule in a table ci ∈ P c, or rewriting a row of p1 by applying
to each letter of the row a rule in a table ri ∈ P r. The set of symbols occurring in
the column (resp. row) that will be rewritten by ci ∈ P c (resp. ri ∈ P r) must be
a subset of {a | a→ α ∈ ci} (resp. {a | a→ tα ∈ ri}). Otherwise, the derivation
can not be achieved because there are some symbols for which ci (resp. ri) does
not provide a rewriting rule. Derivation ⇒ is a binary relation over Σ∗∗ and its
reflexive and transitive closure is denoted by ∗⇒. The language L(G) generated
by the P2DCF grammar G is the set {p | S ∗⇒ p ∈ Σ++ for some S ∈ S′}.
The family of languages generated by some P2DCF grammar is denoted by
P2DCFL. It is worth noticing that all pictures derived at each step by applying
a rewriting rule from the set P c or P r are legal pictures. Since non-terminals are
not admitted by P2DCF grammars, each derivation consists of characters of Σ.
To augment the expressive power of P2DCF grammars, the sequence of rules to
be used can be led by a control language.

Definition 2. A pure 2D context-free grammar with regular control (RP2DCFG)
is a tuple Gr = (G,Γ, C) where:

1. G is a P2DCF grammar;
2. Γ is the control alphabet, actually the set of labels of the rule tables in P c∪P r;
3. C ⊆ Γ ∗ is the regular control associated to the grammar.

If p ∈ Σ∗∗ and S ∈ S′, p is derived from S in Gr by means of a control word
w = w1w2 . . . wn ∈ C, in symbols S ⇒w p, if p is obtained from S by applying the
column/row rules defined by w. The language L(G) generated by the RP2DCF
grammar Gr is the set of pictures {p | S ⇒w p ∈ Σ++ for some w ∈ C}.
The family of languages generated by some RP2DCF grammar is denoted by
RP2DCFL. The family P2DCFL is strictly included in RP2DCFL, indeed each
P2DCF language is a RP2DCF language with control C = Γ ∗. On the other
hand, the language of squares over the symbol a is not a P2DCF language
but can be generated by the RP2DCF grammar (G, {c, r}, (cr)∗) where G =



({a}, {c}, {r}, S) and S → a, c = {a→ aa}, r = {a→ t(aa)}. In order to refine
the given definition of this class of grammars, we consider RP2DCFG whose
alphabet is Σ = ΣT ∪ ΣC where ΣT is the alphabet of final symbol defining
the pictures, and ΣC is a set of auxiliary characters, or control symbols, which
are involved only in the process of derivation. Yet, control symbols can not be
considered as proper non-terminal symbols since they have to be rewritten by
means of derivations guided by the control language, so that no control symbols
appear in the final picture and the generating device can still be seen as a pure
grammar. We showed that the use of control symbols is needed to reach the full
expressiveness of RP2DCFG, i.e., there exist RP2DCF languages that can not
be defined without the use of control symbols.

3 Normal form and parsing complexity

Normal forms of generating grammars are useful tools to get in a easier way
properties of languages and make comparisons between different generating de-
vices. Normal forms, in general, force some constraints on the size and on the
alphabet of the strings/pictures occurring in the left and right parts of the pro-
ductions. Since the model we are considering is a pure grammar, and productions
in the row/column tables always rewrite a single character into the right part
that is a string (or the transpose of a string), the normal form we ask for has
to fix the length of the strings in the right part of each production: formally
a (R)P2DCFG is in normal form if all productions have the form a → α or
a → tβ with |α| = |β| = 2. Pure 2D context-free grammars do not have a
normal form. Indeed, the language L3(a) of pictures of size (hn, kn) (where
h, k are positive integers) on the alphabet {a} are generated by the P2DCFG
({a}, {c1}, {r1}, S), where c1 and r1 are, respectively, composed by the unique
rules a→ an, a→ t(an) and S is the square of a of size (n, n), but no P2DCFG
with column and row productions of length 2. However, we have the following.

Proposition 1. Each (R)P2DCF grammar is equivalent to a RP2DCFG in nor-
mal form.

Actually, a more general result holds: each pure 2D context-free grammar with
a control language belonging to a class of languages closed with respect to finite
substitutions admits a normal form.

Theorem 1. The general problem of the membership of a picture into a lan-
guage generated by a P2DCFG is NP-complete.

We proved the NP-hardness by providing a (polynomial-time) reduction of SAT
to the membership problem for a P2DCFL with an alphabet of at least 5 symbols.
So, the question concerning the parsing complexity for pure 2D grammars with
smaller alphabets is quite natural. We have the following results.

Theorem 2. The parsing of a language generated by (R)P2DCF grammars with
unary alphabet is in P.



On the other hand, the NP-completeness of the membership for RP2DCFL char-
acterizes all the languages with at least two symbols. The proof consists of a
reduction of the set-covering problem to the membership for RP2DCFG.

Theorem 3. The general problem of the membership of a picture to a language
generated by a RP2DCFG with (at least) two symbols is NP-complete.

4 Closure properties

In this section, we present some closure properties of the class of (R)P2DCFL.
Some of them are known from [3] but here we provide new results. First we
considered projections:
Proposition 2. Let G = (Σ,P c, P r, S) be a P2DCFG and let π be a projection
from the alphabet Σ to the alphabet ∆. Then π(L(G)) is a subset of the language
generated by a P2DCFG G such that π(L(G)) = L(G) ∩∆++.

Proposition 3. Let Greg = (G,Γ, C) with G = (Σ,P c, P r, S) be a RP2DCFG
and let π be a projection from the alphabet Σ to the alphabet ∆. Then π(L(G)) is
a subset of the language generated by a RP2DCFG Greg = (G,Γ ∪{cπ}, C{cπ}∗)
such that π(L(Greg)) = L(Greg) ∩∆++.

The two previous propositions show how projection may change the expressive-
ness of the class of languages of P2DCFG. A similar result is obtained also for
Tiling Systems which are the projection of Local languages. In [3] the authors
proved that P2DCFL are not closed under union and under row/column con-
catenation and proved that the closure under union can be retained when a
regular control language is added to the grammars. Yet, no results is provided
concerning the closure under intersection. We have the following:
Proposition 4. Let G1

r = (G1, Γ1, C1) and G2
r = (G2, Γ2, C2) be two RP2DCFG.

Then, the language L(G1
r) ∪ L(G2

r) is RP2DCFL.

Proposition 5. The family of P2DCFL is not closed under intersection.

The family of P2DCFL was shown not to be closed under row/colum concate-
nation in [3]. We conjecture that this holds also for the family of RP2DCFL.
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