Checking Satisfiability of CLTL without
Automata

Marcello M. Bersani, Achille Frigeri

Politecnico di Milano bersani@elet.polimi.it,achille.frigeri@polimi.it

1 Introduction

Finite-state system verification has attained great successes, both using automata-
based and logic-based techniques. Examples of the former are the so-called
explicit-state model checkers [1] and symbolic model checkers [2]. However, some
of the best results have been obtained by logic-based techniques, such as Bounded
Model Checking (BMC) [3], a fully automated (although potentially incomplete)
procedure. In BMC, a finite-state machine A (typically, a version of Biichi Au-
tomata) and a desired property P expressed in Propositional Linear Temporal
Logic (PLTL) are translated into a Boolean formula ¢ to be fed to a SAT solver.
The translation is made finite by bounding the number of time instants. How-
ever, infinite behaviors, which are crucial in proving, e.g., liveness properties,
are also considered by using the well-known property that a Biichi Automaton
accepts an infinite behavior if, and only if, it accepts an infinite periodic behav-
ior. Hence, chosen a bound k£ > 0, a Boolean formula ¢, is built, such that ¢y
is satisfiable if and only if there exists an infinite periodic behavior of the form
af?, with |af| < k, that is compatible with system A while violating property
P. This procedure allows counterexample detection, but it is not complete, since
the violations of property P requiring “longer” behaviors, i.e., of the form «3%
with |a8| > k, are not detected. However, in many practical cases it is possible
to find bounds large enough for representing counterexamples, but small enough
so that the SAT solver can actually find them in a reasonable time.

Clearly, the BMC procedure can be used to check satisfiability of a PLTL
formula, without considering a finite state system A. This has practical applica-
tions, since a PLTL formula can represent both the system and the property to
be checked (see, e.g., [4], where the translation into Boolean formulae is made
more specific for dealing with satisfiability checking and metric temporal oper-
ators). We call this case Bounded Satisfiability Checking (BSC), which consists
in solving a so-called Bounded Satisfiability Problem: Given a PLTL formula P,
and chosen a bound k > 0, define a Boolean formula ¢y, such that ¢y, is satisfiable
if, and only if, there exists an infinite periodic behavior of the form «g8“, with
|as| < k, that satisfies P.

The introduction of many extensions of temporal logic proposed in order to
express property of infinite-state systems, has lead to the study of CLTL(D),
a general framework extending the future-fragment of PLTL by allowing arith-
metic constraints belonging to a generic constraint system D. The resulting logics

are expressive and well-suited to define infinite-state systems and their proper-
ties, but, even for the bounded case, their satisfiability is typically undecidable
[5], since they can simulate general two-counter machines when D is powerful
enough (e.g., Difference Logic). However, there are some decidability results,
which allow in principle for some kind of automatic verification. Most notably,
satisfiability of CLTL(D) is decidable (in PSPACE) when D is the class of In-
teger Periodic Constraints (IPC*) [6], or when it is the structure (D, <,=) with
D € {N,Z,Q,R} [7]. In these cases, decidability is shown by using an automata-
based approach similar to the standard case for LTL, by reducing satisfiability
checking to emptiness verification of Biichi automata. Given a CLTL(D) formula
¢, with D as in the above cases, it is in fact possible to define an automaton Ay
such that ¢ is satisfiable if, and only if, the language recognized by Ay is not
empty. These results, although of great theoretical interest, are not well suited
for a direct implementation, since the involved constructions are very inefficient.

We extended [8] the above results to a more general logic, called CLTLB(D),
which is an extension of PLTLB (PLTL with Both future and past operators)
with arithmetic constraints in constraint system D, and consider a procedure
for satisfiability verification that does not rely on automata constructions. This
procedure is implemented in the Zot toolkit, verified by standard SMT-solvers,
such as z3 [9].

The idea of the procedure is to verify satisfiability by checking a finite num-
ber of k-satisfiability problems. Informally, k-satisfiability amounts to looking
for ultimately periodic symbolic models of the form af%, i.e., such that prefix
af of length k admits a bounded arithmetic model (up to instant k). Although
the k-bounded problem is defined with respect to a bounded arithmetical model,
it provides a finite representation of infinite symbolic models by means of ulti-
mately periodic words. When CLTLB(D) has the property that its ultimately
periodic symbolic models, of the form af“, always admit an arithmetic model,
then the k-satisfiability problem can be reduced to satisfiability of QF-EUD (the
theory of quantifier-free equality and uninterpreted functions combined with D).
In this case, k-satisfiability is equivalent to satisfiability over infinite models.

Symmetrically to standard LTL, where bounded model-checking and SAT-
solvers can be used as an alternative to automata-theoretic approaches to model-
checking, reducing satisfiability to k-satisfiability allows SMT-solvers to be used
in solving satisfiability for CLTLB(D) formulae, instead of checking emptiness of
a Biichi automaton. Moreover, when the length of all prefixes a8 to be tested is
bounded by some finite K, then the number of bounded problems to be solved is
also bounded. Therefore, we also proved that k-satisfiability is complete with re-
spect to the satisfiability problem, i.e., by checking at most K bounded problems
satisfiability of CLTLB(D) formulae can always be answered.

2 Bounded Satisfiability Problem

The k-satisfiability problem for CLTLB(D) formulae is defined in terms of the
existence of a so-called k-bounded arithmetical model oy, which provides a finite

representation of infinite symbolic models by means of ultimately periodic words.
This allows to prove that k-satisfiability is still representative of the satisfiability
problem. In fact, for some constraint systems, a bounded solution can be used to
build the infinite model o for the formula from the k-bounded one o, and from
its symbolic model. We showed that a formula ¢ is satisfiable if, and only if, it is
k-satisfiable and its bounded solution o), can be used to derive its infinite model
o. In case of negative answer to a k-bounded instance, we can not immediately
entail the unsatisfiability of the formula. However, we proved that for every
formula ¢ there exists an upper bound K, which can effectively be determined,
such that if ¢ is not k-satisfiable for all k in [1, K], then ¢ is unsatisfiable.

A bounded symbolic model is, informally, a finite representation of infi-
nite CLTLB(D) models over the alphabet of symbolic valuations SV (¢). We
restrict the analysis to ultimately periodic symbolic models, i.e., of the form
p = a(B)“. The Bounded Satisfiability Problem (BSP) is defined with respect to
a k-bounded model o, (i.e., an assignment for variable in the first k-instants),
a finite sequence p’ (with |p’| = k + 1) of symbolic valuations and a k-bounded
satisfaction relation =y defined as follows:

ok, 0 =k pl iff op, i = p'(0) for all 0 <4 < k.
The k-satisfiability problem of formula ¢ is defined as follows:

Input A CLTLB(D) formula ¢, a constant k € N

Problem Is there an ultimately periodic sequence of symbolic valuations p =
a(B)¥ (with |af| = k+1), such that p,0 | ¢ and which admits a k-bounded
model o, such that oy g p/, with p/ = af8?

Since the length k is fixed, the procedure for determining the satisfiability of
CLTLB(D) formulae over bounded models is not complete: even if there is no
accepting run of automaton Ay when p’ as above has length k, there may be
accepting runs for a larger p'.

Definition 1. Given a CLTLB(D) formula ¢, its completeness threshold Ky,
if it exists, is the smallest number such that ¢ is satisfiable if and only if ¢ is
Ky-satisfiable.

Theorem 1. Let ¢ be a CLTLB(D) formula. If D is (D, <,=), then the com-
pleteness threshold exists and is less then |SV(4)| - 2\91. If D is IPC*, then the
completeness threshold exists and is less then 4|V 2| A\2|SV (¢)] - 2!9!, where X is
an effectivly constant depending on the depth of ¢.

3 Encoding for BSP without Automata

We proved that the BSP for a CLTLB(D) formula can be reduced to the satisfia-
bility of a quantifier-free formula in the theory EUFUD (QF-EUD), where EUF
is the theory of Equality and Uninterpreted Functions, provided that D includes
a copy of N with the successor relation and that EUF UD is consistent. The last

condition is easily verified in the case of the union of two consistent, disjoint,
stably infinite theories (as is the case for EUF and arithmetic). In [10] a similar
approach is described for the case of Integer Difference Logic (DL) constraints.
It is worth noting that standard LTL can be encoded by a formula in QF-EUD
with D = (N, <). In this case, the encoding is more succinct than the Boolean
one proposed in [11].

We denote the encoding of the BSP for ¢ with bound k by |¢|;. We proved
the main equivalence result which draws the connection between such encoding
and the k-satisfiability problem.

Theorem 2. Let ¢ € CLTLB(D) with N definable in D together with the suc-
cessor relation, ¢ is k-satisfiable with respect to k € N if, and only if, |¢|k is
satisfiable.

Proposition 1. Let ¢ € CLTLB(D) with N definable in D together with the
successor relation, ¢ is k-satisfiable with respect to k € N if, and only if, ¢ has
an ultimately periodic model af with |afB] =k + 1.

References

1. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (may 1997) 279 —295

2. Clarke, E., McMillan, K., Campos, S., Hartonas-Garmhausen, V.: Symbolic model
checking. In: Computer Aided Verification. Volume 1102 of Lecture Notes in Com-
puter Science. (1996) 419-422

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 1579 of Lecture Notes in Computer Science. (1999) 193—207

4. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric
temporal logic specifications. ACM Transactions on Software Engineering and
Methodology (TOSEM) (2012) To appear.

5. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. Technical Report LSV-06-5, LSV (2006)

6. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. In: International Syposium on Temporal Representation and Reasoning
(TIME), IEEE Computer Society (2007) 94-104

7. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. In-
formation and Computation 205(3) (2007) 380415

8. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P.:
Constraint LTL Satisfiability Checking without Automata. ACM Transactions on
Computational Logic (submitted)

9. Microsoft Research: 73: An efficient SMT solver.
http://research.microsoft.com/en-us/um/redmond/projects/z3/ (2009)

10. Bersani, M.M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-based
verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In: IEEE International Conference on
Software Engineering and Formal Methods. (2010) 244-254

11. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5) (2006)

