
A Secure Coordination of Agents with

Nonmonotonic Soft Concurrent Constraint

Programming⋆,⋆⋆

Stefano Bistarelli1,2 and Francesco Santini1,3

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
bista,francesco.santini@dmi.unipg.it

2 Istituto di Informatica e Telematica, IIT-CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
F.Santini@cwi.nl

Extended abstract. In the context of distributed/concurrent systems, the abil-
ity to coordinate the agents coupled with the possibility to control the actions
they perform is significantly important. The necessity of guaranteeing secu-
rity properties is rapidly arising: in an open and untrusted environment, an
attacker can threat the integrity and confidentiality properties of the exposed
data. The ingredient at the basis of our research is Nonmonotonic Soft Concurrent
Constraint Programming (NSCCP) [4]. The NSCCP language extends the classical
Soft Concurrent Constraint Programming (SCCP) language [3] with the possibil-
ity of relaxing (i.e. retracting or removing constraints) the store with a retract
action, which clearly improves the expressivity of the language [4]. However,
non-monotonicity raises further security concerns, since the store σ is a shared
and centralized resource accessed in a concurrent manner by multiple agents at
the same time: may an agent A relax a constraint c added to σ by the agent B?
Since in this case we are reasoning about soft constraints instead of crisp ones,
“how much” of c can agent A relax? Even if (S)CCP has been successfully used to
analyse security issues [1], the paradox is that security aspects linked to the lan-
guage itself have not been inspected yet. For these reasons, a constraint-based
language modeling the interactions among agents in an untrusted environment
needs to support security by providing some access control mechanisms with a
granularity at the level of the single constraints. Therefore, our intent is to equip
the core actions of the NSCCP language [4] with a formal system of rights on
the constraints and then study the execution of agents from this new point of
view. We take inspiration from the Access Control List (ACL) model [6], which
is one of the security concepts in the design of secure computing systems. An
ACL specifies which users or system processes are granted access to objects, as

⋆ Work carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship
Programme. This Programme is supported by the Marie Curie Co-funding of Regional,
National and International Programmes (COFUND) of the European Commission.

⋆⋆ Research partially supported by MIUR PRIN 20089M932N project: “Innovative and
multi-disciplinary approaches for constraint and preference reasoning”.

well as what operations are allowed on given objects. In this paper, when an
agent A1 adds a piece of information to the store, i.e., a constraint c, it specifies
also the confidentiality and integrity rights [9] on that constraint, for each agent
Ai participating to the protected computation. For instance, how much of c the
agent A3 may remove from the store (i.e. the retract rights) and how much of c
the agent A2 may query with an ask operation (i.e. the ask rights).

We use control mechanisms in order to guarantee some form of security
and privacy on the shared store of constraints. However, since we work on the
semiring-based formalism [3], our checks are focused on the quantitative, rather
than qualitative, point of view, differently from previous works on Linda [8, 5,
7]. In fact, our approach is able to set “how much” of the current store each
agent can retract or ask. Therefore, also the rights, together with the information
they are applied on (i.e., soft constraints) are soft, in the sense they may concern
“part” of the added information. In a crisp vision, if c1 is added to the store, it is
possible to prevent only the removal of the entire c1, but not part of it. When an
agent add a constraint to the store by performing a tell action, it also specifies the
rights that all the other agents have on that constraint. We define three kinds of
rights: the tell rights, stating how much the added constraint can be “worsened”
by the other agents, the ask rights, which specify how much of the constraint can
be “read” by each agent and the retract rights, describing how much of the added
constraint can be removed via a retract action. The tell and retract rights can be
classified as integrity rights [9], while the ask rights are classified as confidentiality
rights [9]. In Def. 1 we define the tell, ask and retract rights.

Definition 1 (Tell, Ask and Retract Rights). Let n be the number of agents partici-
pating to the concurrent computation. Tell rights. Each constraint ck added to the store
is associated with a vector Rt = 〈ct1

, ct2
, . . . ctn

〉. cti
represents the tell right imposed

on agent Ai. In particular, cti
represents how much the agent Ai can add (with a tell

operation) to the constraint ck, that is how much Ai can worsen ck. Ask rights. Each
constraint ck added to the store is associated with a vector Ra = 〈ca1

, ca2
, . . . can

〉. cai

represents the ask right imposed on agent Ai. In particular, cai
represents how much

of the added ck constraint can be read (with an ask operation in the common store) by
agent Ai. Retract rights. Each constraint ck added to the store is associated with a
vector Rr = 〈cr1

, cr2
, . . . crn

〉. cri
represents the retract rights imposed on agent Ai. In

particular, cri
represents how much of ck can be removed (with a retract operation) by

agent Ai.

We suppose that each agent knows the name (and, consequently, also the
number) of the other agents participating to the secure computation on the
shared store. This is a general premise for a secure computation, as for example
given in Operating Systems Primitives. Moreover, also in the other references
in literature an identifier is defined for each entity whose computation is con-
trolled [5]. Supposing to know the number of agents at the beginning of the
computation is a common practice in many security-related fields, as the exe-
cution of multiple threads on the same shared memory. We propose NSCCP as
a language to enforce a secure access over general shared resources, checking if

quantitative rights over them are respected, e.g. “Peter may not eat more than
10% of the birthday cake”. Moreover, we can suppose that the names of agents
are instead names of (security) classes each agent belongs to. The rights of each
class are then shared by all the included agents; in this way it is not necessary
to set the rights for each single agent, or even to know their number.

With an abuse of notation we define the composition operation of rights
as R′ = R ⊗ R̄, where R′ models the new rights in the computation state af-
ter the update, while R̄ represents the new rights that modify the state (pa-
rameter of the tell action in Fig. 1). R′ = R ⊗ R̄ is implemented with equa-
tions (1)∀i.R′t[i] = Rt[i] ⊗ R̄t[i], (2)∀i.R′a[i] = Ra[i] ⊗ R̄a[i] and (3)∀i.R′r[i] =
Rr[i] ⊗ R̄r[i] (i.e. respectively tell, ask and retract rights): for example, if we
have two agents A1 and A2, we use the Weighted semiring 〈R+,min,+,∞, 0〉
and R, R̄ are: R = (Rt = 〈x, 5̄, x + y〉,Ra = 〈y, x, 1̄〉,Rr = 〈x, z, 2̄〉) R̄ = (R̄t =

〈y, x, 3̄〉, R̄a = 〈1̄, 1̄, 1̄〉, R̄r = 〈1̄, x, 6̄〉) then theR′ composition of rights is given by
R
′ = R ⊗ R̄ = (R′t = 〈x + y, x + 5̄, x + y + 3̄〉,R′a = 〈y, x, 1̄〉, R

′
r = 〈x, x + z, 8̄〉).

The Secure NSCCP Language. Given a soft constraint system [3], in Fig. 1 we
present the syntax of the secure NSCCP language [2] , which can be used in a
secure coordination of agents. In Fig. 1, P is the class of programs, F is the class
of sequences of procedure declarations (or clauses), A is the class of agents, c
ranges over constraints, X is a set of variables and Y is a tuple of variables.

PF F.A
FF p(Y) :: A | F.F
AF sec f ail | success | tell(c, R̄)֌ A | retract(c)֌ A | E | A‖A | ∃x.A | p(Y)
EF ask(c)֌ A | E + E

Fig. 1: Syntax of the NSCCP language.

The difference w.r.t. [4] is that the tell action has a new parameter (in addition
to c), that is the R̄ rights. When executing tell(c, R̄), it is not obviously possible
to quantitatively impose more rights on c than c itself: therefore, the syntactic
conditions on R̄ when writing NSCCP programs are that ∀i. c ⊢ R̄t[i], c ⊢
R̄a[i], c ⊢ R̄r[i].

To give an operational semantics to our language we describe an appro-
priate transition system 〈Γ,T,→〉 where Γ is a set of possible configurations,
T ⊆ Γ is the set of terminal configurations and →⊆ Γ × T is a binary relation
between configurations. The set of configuration is Γ = {〈A, σ,R 〉} where σ ∈ C
and R is the matrix of rights, while the set of terminal configuration is instead
T = {〈success, σ,R〉}. To remember also the rights, we need to extend the repre-
sentation of a computation state in NSCCP in Def. 2.

Definition 2 (Computation States). The state of a computation in NSCCP is repre-
sented by the triple 〈A, σ,R〉, where A is the description of the agent still to be executed,
σ is the constraint store, andR is the set of the rights on the constraints.R is initialized
as ∀i.Rt[i] = ∅,Ra[i] = ∅,Rr[i] = ∅.

R1
σ , ∅ Rt[i] ⊢ c Rt[i] = Rt[i]⊖÷ c check(σ ⊗ c)֌

〈telli(c, R̄)֌ A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R2
σ = ∅ Rt[i] = Rt[i]⊖÷ c check(σ ⊗ c)֌
〈telli(c, R̄)֌ A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R3
Rr[i] ⊢ c R

′
r[i] = Rr[i]⊖÷ c σ ⊢ c σ′ = σ⊖÷ c check(σ⊖÷ c)֌
〈retracti(c)֌ A, σ,R〉 −→ 〈A, σ′,R′〉

R4
Rt[i] ⊢ R̄t Ra[i] ⊢ R̄a Rr[i] ⊢ R̄r p(Y) :: B ∈ F check(σ)֌

〈execpi(p(Y), R̄))֌ A, σ,R〉 −→ 〈A ‖ B, σ,R ∪ R̄〉

R5
〈E j, σ,R〉 −→ 〈A j, σ

′,R′〉 j ∈ [1,n]

〈Σn
i=1

Ei, σ,R〉 −→ 〈A j, σ
′,R′〉

R6
Ra[i] ⊢ c σ ⊢ c check(σ)֌
〈aski(c)֌ A, σ,R〉 −→ 〈A, σ,R〉

R7
Ra[i] ⊢ c σ 6⊢ c check(σ)֌
〈nask(c)֌ A, σ〉 −→ 〈A, σ〉

R8
〈A, σ,R〉 −→ 〈A′, σ′,R′〉

〈A ‖ B, σ,R〉 −→ 〈A′ ‖ B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B ‖ A′, σ′,R′〉

R9
〈A, σ,R〉 −→ 〈success, σ′,R′〉
〈A ‖ B, σ,R〉 −→ 〈B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B, σ′,R′〉

R10
〈A[x/y], σ,R〉 −→ 〈B, σ′,R′〉
〈∃x.A, σ,R〉 −→ 〈B, σ′,R′〉

y fresh

R11
〈A, σ,R〉 −→ 〈B, σ′,R′〉
〈p(Y), σ,R〉 −→ 〈B, σ′,R′〉

p(Y) :: A ∈ F

Fig. 2: The transition system for NSCCP.

In Fig. 2 we describe the operational semantics of secure NSCCP. A full
explanation of the rules is given in [2]. In this paper we add rule R4; with this
rule we are able to create a new agent in parallel with the other already being
executed. The “body” of the new agent is described by one of the procedures
defined in the declaration section F, as presented in Fig. 1: in the precondition
of the rule, p(Y) :: B ∈ F. The creating agent can pass to the son a part of his
right, and at most all of his rights. These rights are not revoked from the creator.

References

1. Bella, G., Bistarelli, S.: Soft constraint programming to analysing security protocols.
TPLP 4(5-6), 545–572 (2004)

2. Bistarelli, S., Campli, P., Santini, F.: A secure coordination of agents with nonmonotonic
Soft Concurrent Constraint Programming. In: Proceedings of the ACM Symposium
on Applied Computing, SAC 2012. pp. 1551–1553. ACM (2012)

3. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM
Trans. Comput. Logic 7(3), 563–589 (2006)

4. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language to model
the negotiation process. to appear in Fundamenta Informaticae (2011)

5. Gorrieri, R., Lucchi, R., Zavattaro, G.: Supporting secure coordination in SecSpaces.
Fundam. Inform. 73(4), 479–506 (2006)

6. Sandhu, R., Samarati, P.: Access control: Principles and practice. IEEE Communica-
tions 32(9), 40–48 (1994)

7. Udzir, N.I., Wood, A.M., Jacob, J.L.: Coordination with multicapabilities. Sci. Comput.
Program. 64(2), 205–222 (2007)

8. Vitek, J., Bryce, C., Oriol, M.: Coordinating processes with secure spaces. Sci. Comput.
Program. 46(1-2), 163–193 (2003)

9. Whitman, M.E., Mattord, H.J.: Principles of Information Security. Course Technology
Press, Boston, MA, USA, 3rd edn. (2007)

