
Efficient algorithms for distributed shortest
paths on power-law networks

Gianlorenzo D’Angelo1, Mattia D’Emidio2, Daniele Frigioni2, and Daniele
Romano2

1 MASCOTTE Project INRIA/I3S(CNRS/UNSA) gianlorenzo.d angelo@inria.fr
2 Dip. di Ingegneria e Scienze dell’Informazione e Matematica, University of L’Aquila
{mattia.demidio,daniele.frigioni}@univaq.it, daniele.romano.vis@gmail.com

1 Introduction

The problem of computing and maintaining shortest paths in a distributed net-
work whose topology dynamically changes is a core functionality of today’s com-
munication networks. The problem has been widely studied in the literature, and
the solutions found can be classified as distance-vector and link-state.

Distance-vector algorithms, as for example the distributed Bellman-Ford
method [6], require that a node knows the distance from each of its neighbors
to every destination and stores them in a data structure called routing table;
a node uses its own routing table to compute the distance and the via to each
destination. The main drawbacks of distance-vector algorithms are the massive
use of communication resources and the well-known looping phenomena.

Link-state algorithms, as e.g. the OSPF protocol used in Internet [7], require
that a node knows the entire network topology to compute its distance to any
destination, usually running Dijkstra’s algorithm. They are free of looping, al-
though each node needs to receive and store up-to-date information about the
entire network topology after a change, thus requiring quadratic space per node.

In the last years, there has been a renewed interest in devising new effi-
cient distance-vector solutions for Large-Scale Ethernet networks, where usually
scalability and reliability are highly desirable properties or where the memory
power of the nodes is limited (see, e.g., [2, 8, 9]). Notwithstanding this increasing
interest, the most interesting distance-vector algorithm is still DUAL (Diffuse
Update ALgorithm) [4], which is free of looping and is part of the CISCO’s
widely used EIGRP protocol, although it requires a high space per node.

In this paper, we present two contributions in this field. First, we describe
LFR (Loop Free Routing) a new loop-free distance vector routing algorithm,
recently proposed in [3], which: (i) from the theoretical point of view, is able to
update the shortest paths of a distributed network in fully dynamic scenarios
using the same message complexity and less space per node than DUAL; (ii)
from the experimental point of view, has been shown to be the best choice, both
in terms of messages sent and space requirements, in networks having a power-
law node degree distribution, a highly important class of networks which includes



many currently implemented communication infrastructures, like the Internet,
the WWW, and so on [1]. Second, we introduceDP (Distributed Pruning), a new
general and practical technique which is a generalization of DLP [2]. DP can
be combined with every distance-vector algorithm based on shortest paths with
the aim of overcoming some of their limitations (high number of messages sent,
low scalability, poor convergence) in power-law networks. We give experimental
evidence of the effectiveness of DP, showing that the combination of DP with
DUAL and LFR provides a huge improvement in both the global number of
messages sent and the space occupancy per node wrt DUAL and LFR, resp..

2 Description of LFR

In this section, we describe LFR, introduced in [3]. LFR stores, for each node v,
the estimated distance D[v, s] and the feasible via, VIA[v, s], that is the node which
provides the minimum distance to s and satisfies SNC (Source Node Condition),
a sufficient condition for loop-freedom [4]. In addition, node v maintains for each
s ∈ V , the following data structures: (i) ACTIVE[v, s]: the state of node v wrt
a source s; v is in active state (ACTIVE[v, s] = true), if and only if v is trying
to update VIA[v, s] after a weight increase operation; (ii) UD[v, s]: the distance
from v to s through VIA[v, s]; if v is active then UD[v, s] ≥ D[v, s], otherwise they
coincide. In addition, in order to implement SNC, node v stores a temporary
data structure tempDv which is allocated only when v is active wrt s, and it is
deallocated when v turns passive wrt s. The entry tempDv[u, s] contains UD[u, s],
for each u ∈ N(v).

The algorithm starts when the weight of an edge {xi, yi} changes. As a con-
sequence, xi (yi, resp.) sends to yi (xi, resp.) an update message carrying the
value UD[xi, s] (UD[yi, s], resp.). If an arbitrary node v receives an update mes-
sage from u ∈ N(v), then it performs an update procedure in which, basically,
v compares the received value UD[u, s] + w(u, v) with D[v, s] in order to deter-
mine whether v needs to update its estimated distance and VIA[v, s]. If node v
is active, the processing of the message is postponed by enqueueing it into the
FIFO queue associated to s. Otherwise, if D[v, s] > UD[u, s]+w(u, v), then v sets
D[v, s] = UD[u, s] + w(u, v) and VIA[v, s] = u, while if D[v, s] < UD[u, s] + w(u, v)
and VIA[v, s] = u, node v performs a phase called Local-Computation in which
it sends a get.dist to all its neighbor, except VIA[v, s] = u, in order to know
the corresponding estimated distances to s. Each neighbor u ∈ N(v) replies
with its UD[u, s]. When v receives these values, it tries to compute a new
VIA[v, s], by comparing the received distances with D[v, s]. If this phase suc-
ceeds, node v updates its routing information and propagates the change, Oth-
erwise, node v initiates a distributed phase, named Global-Computation. It sets
UD[v, s] = UD[VIA[v, s], s] + w(v, VIA[v, s]) and sends to all its neighbors, except
VIA[v, s], a get.feasible.dist message, carrying UD[v, s]. A node k ∈ N(v) that re-
ceives such a message first verifies whether VIA[k, s] = v or not. In the first case, it
replies to v with UD[k, s]. In the second case, it performs the Local-Computation
and possibly the Global-Computation, in order to update its routing informa-



tion and to reply to v. Note that this distributed phase can involve the whole
network. Finally, if either D[v, s] = UD[u, s]+w(u, v) or D[v, s] < UD[u, s]+w(u, v)
and VIA[v, s] 6= u, the message is discarded and the procedure ends.

If we denote as Φ the total number of nodes affected by a set of updates on
the edges of the network, as φ the maximum number of destinations for which
a node is affected, and as ∆ the maximum node degree of the network, then
LFR requires O(∆ ·Φ) messages and O(n+∆ ·φ) space per node, while DUAL
requires O(∆ · Φ) messages and Θ(∆ · n) space per node.

3 Distributed Pruning

In this section, we introduce DP (Distributed Pruning), a new technique that
can be combined with every distance-vector algorithm, with the aim of reduc-
ing the messages sent and the space occupancy per node of that algorithm on
power-law networks. The idea underlying DP mainly rely on two facts: (i) a
power-law network with n nodes typically has average node degree much smaller
than n and a number of nodes with low degree which is generally high (for ex-
ample, the graphs of the CAIDA IPv4 topology dataset [5] have average degree
approximately equal to n/2000, and a number of nodes with degree smaller than
3 approximately equal to 2n/3); (ii) there are many topological situations in
which nodes with degree smaller than 3 should neither perform nor be involved
in the distributed computation of shortest paths, as they cannot provide any use-
ful information. DP has been designed to improve the performances of a generic
distance-vector algorithm, by exploiting these configurations.

In particular, when applied to a generic distance-vector algorithm, DP forces
the distributed computation to be carried out only by those nodes of the network
which has degree greater than two (central nodes). The non-central nodes receive
updated routing information passively and do not start any kind of distributed
computation. To implement this strategy, DP requires that a generic node stores
and updates information about non-central paths. To this aim, each node v
maintains a data structure, called CHain Path, which is an array containing
one entry CHPv[s], for each central node s, where the list of all edges, with
the corresponding weight, belonging to the non-central paths containing s are
stored. The space overhead induced by the CHain Path is clearly O(n) per node.
However, DP globally induces a reduction in the space occupancy per node, as
the overhead required to store the CHain Path is counterbalanced by a reduction
in the space occupancy per node of the original algorithm, which can avoid to
store some information about non-central nodes.

In order to check the effectiveness of DP, we combined it with DUAL and
LFR by obtaining two new algorithms named DUAL-DP and LFR-DP, resp..
Then, we implemented the four algorithms in OMNeT++3 and performed a pre-
liminary experimental study. As input to the algorithms, we considered instances
similar to the ones used in [2]. We generated a set of different tests, each test con-
sists of a CAIDA graph and a set of k edge updates, where k ∈ {5, 10, . . . , 200}
3 OMNeT++, Discrete event simulation environment: http://www.omnetpp.org.



0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 20 40 60 80 100 120 140 160 180 200

k

LFR
LFR-DP
DUAL

DUAL-DP

150000

200000

250000

300000

350000

400000

450000

0 20 40 60 80 100 120 140 160 180 200

k

LFR LFR-DP DUAL DUAL-DP

Fig. 1: Number of messages sent (left) and average space occupancy per node in
Bytes (right) of LFR, LFR-DP, DUAL and DUAL-DP on a CAIDA graph
with 8000 nodes subject to a set of k edge updates.

and each edge update consists of multiplying the weight of a randomly selected
edge by a percentage value randomly chosen in [50%, 150%].

Our experiments show that the combinations of DUAL and LFR with
DP provide a huge improvement both in the global number of sent messages
(Fig. 1(left)) and in the space occupancy per node wrt DUAL and LFR, resp..
The reduction in the space occupancy per node is significant both in the average
and in the maximum case. We have noticed improvements also wrt the combi-
nations of DUAL and LFR with DLP ([2]), thus allowing us to state that DP
represents a step forward wrt the results presented in [2].

References

1. R. Albert and A.-L. Barabási. Emergence of scaling in random networks. Science,
286:509–512, 1999.

2. G. D’Angelo, M. D’Emidio, D. Frigioni, and V. Maurizio. A speed-up technique
for distributed shortest paths computation. In ICCSA 2011, volume 6783 of LNCS,
pages 578–593, 2011.

3. G. D’Angelo, M. D’Emidio, D. Frigioni, and V. Maurizio. Engineering a new loop-
free shortest paths routing algorithm. In SEA 2012, volume 7276 of LNCS, pages
123–134, 2012.

4. J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Trans. on Networking, 1(1):130–141, 1993.

5. Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon, M. Luckie,
and K. Claffy. The CAIDA IPv4 routed/24 topology dataset.
http://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml.

6. J. McQuillan. Adaptive routing algorithms for distributed computer networks. Tech-
nical Report BBN Report 2831, Cambridge, MA, 1974.

7. J. T. Moy. OSPF: Anatomy of an Internet routing protocol. Addison-Wesley, 1998.
8. S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed path

computation. IEEE/ACM Trans. on Networking, 18(1):307–319, 2010.
9. C. Zhao, Y. Liu, and K. Liu. A more efficient diffusing update algorithm for loop-

free routing. In 5th Int. Conf. on Wireless Communications, Networking and Mobile
Computing (WiCom09), pages 1–4. IEEE Press, 2009.


