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1 Introduction

A very general problem in the theory of formal languages is, given a ”basis” of languages
and a set of operations, to characterize the family of languages expressible from the ”basis”
by using the operations. In practice, a basis of languages will consists of a set of very simple
languages, such as the languages of the form {a}, where a is a letter of the alphabet. In
the theory of regular languages, the operations taken into account are usually the Boolean
operations, the concatenation and the (Kleene) star operation.

In this setting, two families of languages play a fundamental role: the family REG of
regular languages, and the family SF of star-free languages. REG is defined as the smallest
family of languages containing the languages of the form {a}, where a is a letter, and {ǫ},
where ǫ is the empty word, and closed under union, concatenation and star. It is well known
that the family REG is closed also under all Boolean operations. The family SF of star-free
languages is the smallest family of languages containing the languages of the form {a} and
{ǫ}, and closed under Boolean operations and concatenation.

Another operation that plays an important role in the theory of formal languages is the
shuffle operation. Recall that the shuffle product (or simply shuffle) of two languages L1, L2

is the language

L1 � L2 = {u1v1...unvn|n ≥ 0, u1...un ∈ L1, v1...vn ∈ L2}.

It is well known (cf. [5]) that the family REG of regular languages is closed under shuffle.
The study of subfamilies of regular languages closed under shuffle is a difficult problem,
partly motivated by its applications to the modeling of process algebras [1] and to program
verification.

In particular, we here consider the smallest family of languages containing the languages
of the form {a} and {ǫ}, and closed under Boolean operations, concatenation and shuffle.
Let us call intermixed the languages in this family, which is denoted by INT. It is perhaps
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surprising that the following important problem in the theory of regular languages is still
open, and to a large extent unexplored.

Problem 1 Give a (decidable) characterization of the family INT.

In this talk we discuss this problem: we present some partial results and we introduce
new special problems as possible steps in the characterization of the family INT. Such partial
results and special problems show the deep connections of Problem 1 with other relevant
aspects of formal languages theory and combinatorics on words. The results here presented
are essentially based on the papers [2] and [3].

2 Star-Free and Intermixed Languages

In [2] it is proved the following theorem showing that the family INT of intermixed languages
is strictly included in the family REG of regular languages and strictly contains the family
SF of star-free languages.

Theorem 2.1 SF  INT  REG

Moreover, in [2] it is shown that the family INT is closed under quotients, but it is not
closed under inverse morphism. Therefore, the family INT is not a variety of languages (cf.
[11]), and so it cannot be characterized in terms of syntactic monoids.

Let us recall (cf. [9])that a language L ⊆ Σ∗ is said to be aperiodic, or non-counting, if
there exists an integer n > 0 such that for all x, y, z ∈ Σ∗ one has

xynz ∈ L ⇔ xyn+1z ∈ L.

A fundamental theorem of Schutzenberger states that a regular language is star-free if and
only if it is aperiodic.

The strict inclusion between the families SF and INT implies that the shuffle of two
star-free languages in general is not star-free. This means, roughly speaking, that the shuffle
creates periodicities.

In order to enlighten on the difficult Problem 1, in this talk we consider the following

Problem 2 Determine conditions under which the shuffle of two star-free languages is star-
free too.

A first condition is obtained in [3] by introducing a weaker version of the shuffle product,
called bounded shuffle.
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Let k be a positive integer. The k-shuffle of two languages L1, L2 ⊆ Σ∗ is defined as
follows:

L1 �k L2 = {u1v1...umvm|m ≤ k, u1...um ∈ L1, v1...vm ∈ L2}.

Any k-shuffle is called bounded shuffle. It is not difficult to show that the family REG of
regular languages is closed under bounded shuffle. In [3] it is proved the following theorem.

Theorem 2.2 SF is closed under bounded shuffle, i.e. if L1, L2 ∈ SF then L1�k L2 ∈ SF ,
for any k ≥ 1.

One can derive the following corollary.

Corollary 2.3 The shuffle of a star-free language and a finite language is star-free.

3 Partial Commutations

The family SF is closed under concatenation and it is not closed under shuffle. What is the
difference between concatenation and shuffle?

In this section we introduce an operation between languages, that generalizes at the
same time concatenation and shuffle, and we investigate the closure of SF with respect to
this operation. The new operation is defined by introducing a partial commutation between
the letters of the alphabet, and its appropriate setting is the theory of traces (cf [4]).

Let Γ be a finite alphabet and let θ ⊆ Γ×Γ be a symmetric and irreflexive relation called
the (partial) commutation relation. We consider the congruence ∼θ of Γ∗ generated by the
set of pairs (ab, ba) with (a, b) ∈ θ. If L ⊆ Γ∗ is a language, [L]θ denoted the closure of L by
∼θ, and L is closed by ∼θ if L = [L]θ. The closed subsets of Γ∗ are called trace languages.

Let now L1 and L2 be two languages over the alphabet Σ

Let us consider two disjoint copies Σ1 and Σ2 of the alphabet Σ, i.e. such that Σ1∩Σ2 = ∅,
and the isomorphism σ1 from Σ∗

1 to Σ∗ and σ2 from Σ∗

2 to Σ∗.

Let L′

1 (L′

2 resp.) be the subset of Σ∗

1 (Σ∗

2 resp.) corresponding to L1 (L2 resp.) under
the isomorphism σ1 (σ2 resp.). Let us consider the morphism σ : (Σ1 ∪ Σ2)

∗ → Σ∗ defined
as follows:

σ(a) =

{

σ1(a), if a ∈ Σ∗

1;
σ2(a), if a ∈ Σ∗

2.

Let θ be of the form θ ⊆ Σ1 × Σ2. The θ − product (denoted by �θ) of the languages
L1, L2 ⊆ Σ∗ is defined as follows:

L1 �θ L2 = σ([L′

1L
′

2]θ).
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Remark that the product (concatenation) and the shuffle correspond to two special (ex-
tremal) cases of the θ−product. Indeed, if θ = ∅ then L1�θL2 = L1L2, and, if θ = Σ1×Σ2,
then L1 �θ L2 = L1 � L2.

The partial commutation θ ⊆ Σ1 ×Σ2 induces a partial commutation θ′ on Σ defined as
follows: if (a, b) ∈ θ the (σ1(a), σ2(b)) ∈ θ′.

In [6] it is proved the following theorem.

Theorem 3.1 Let L1 and L2 be two languages closed under θ′, i.e., [L1]θ′ = L1 and [L2]θ′ =
L2. If L1 and L2 ∈ SF , then L1 �θ L2 ∈ SF .

The theorem states, roughly speaking, that, if internal commutation (i.e., the commu-
tations allowed inside each of the languages L1 and L2) is the ”same” as the external com-
mutation (i.e., the commutations between the letters in L1 and the letters in L2), then the
θ − product preserves the star-freeness.

Special cases of the previous theorem are the well known result that the concatenation
of two star-free languages is star-free, and the result of J.F. Perrot (cf. [10]) that the shuffle
of two commutative star-free languages is star-free.

4 Unambiguous Star-Free languages

In this section we investigate some conditions for Problem 2, related to the unambiguity of
the product of languages.

A language L ⊆ Σ∗ is a marked product of the languages L0, L1, ..., Ln if

L = L0a1L1a2L2...anLn,

for some letters a1, a2, ..., an of Σ.

It is known (cf [13]) that the family SF of star-free languages is the smallest Boolean
algebra of languages of Σ∗ which is closed under marked product.

A marked product L = L0a1L1a2L2...anLn is said to be unambiguous if every word u of
L admits a unique decomposition

u = u0a1u1...anun,

with u0 ∈ L0, u1 ∈ L1, ..., un ∈ Ln. For instance, the marked product {a, c}∗a{ǫ}b{b, c}∗ is
unambiguous.

Let us define the family USF of unambiguous star-free languages as the smallest Boolean
algebra of languages of Σ∗ containing the languages of the form A∗, for A ⊆ Σ, which is
closed under unambiguous marked product (cf [13].

4



The family USF is a very robust class of languages: the languages in this family admit
indeed several other nice characterizations (see [15] for a survey).

It can be shown that USF is strictly included in SF, and so we have the following chain
of inclusions:

USF  SF  INT  REG.

The following theorem, proved in [3], shows the role of unambiguity in Problem 2.

Theorem 4.1 If L1 and L2 ∈ USF , then L1 � L2 ∈ SF .

5 Cyclic Submonoids and Combinatorics on Words

The languages in the family USF can be described by regular expressions in which the star
operation is restricted to subsets of the alphabet. Furthermore, Theorem 4.1 states that the
shuffle of languages in this family is star-free. Hence, the critical situations, with respect
to Problem 2, occur with languages corresponding to regular expressions in which the star
operation is applied to concatenation of letters. So, in this section, we consider the shuffle
of languages of the form u∗, where u is a word of Σ∗. Actually, such languages correspond
to cyclic submonoids of Σ∗.

The special interest of such languages in our context is shown by the following theorem,
proved in [2].

Theorem 5.1 If the word u contains more than one letter, then the language u∗ is inter-
mixed.

Moreover, next theorem, firstly proved in [9], shows that the combinatorial properties of
the word u play a role in Problem 2. Let us first introduce a definition. A word u ∈ Σ∗ is
primitive if it is not a proper power of another word of Σ∗, i.e., if the condition u = vn, for
some word v and integer n, implies that u = v and n = 1.

Theorem 5.2 The language u∗ is star-free if and only if u is a primitive word.

We now consider the shuffle u∗� v∗ of two cyclic submonoids generated by the words u
and v, respectively. If u and v are primitive words then, by the previous theorem, u∗ and
v∗ are star-free languages. Remark that the languages u∗ and v∗ do not belong to USF,
and their shuffle, in general, is not star-free. Here we study the conditions under which the
language u∗ � v∗ is star-free.

Let us consider some examples. If u = b and v = ab, the language b∗� (ab)∗ = (b+ ab)∗

is star-free. Let us consider now u = aab and v = bba, the language (aab)∗ � (bba)∗ is not
star-free. Indeed the language

((aab)∗ � (bba)∗) ∩ (ab)∗ = ((ab)3)∗
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is not star-free, by the Theorem 5.2

Problem 3 : Characterize the pairs of primitive words u, v ∈ Σ∗ such that u∗ � v∗ is a
star-free language.

This last problem is closely related to some relevant questions in combinatorics on words.
Recall that combinatorics on words is a fundamental part of the theory of words and lan-
guages. It is deeply connected to numerous different fields of mathematic and its applications,
and it emphasizes the algorithmic nature of many problems on words (cf [7]).

Some important problems in combinatorics on words pertain to the non primitive words
that appear in the set u+v+, where u and v are primitive words.

A remarkable result in this direction is the famous Lyndon-Schutzenberger theorem (cf
[8]), originally formulated for the free groups.

Theorem 5.3 If u and v are distinct primitive words, then the word unvm is primitive for
all n,m ≥ 2.

The next theorem, proved by Shyr and Yu ([14]), can be considered as a light improvement
of the previous result.

Theorem 5.4 If u and v are distinct primitive words, then there is at most one non-
primitive word in the language u+v+.

Problem 3 is, in a certain sense, related to those considered in the previous theorems,
with the difference that we here take into account the shuffle of the two languages u+ and v+,
instead of their concatenation. Actually, Problem 3 leads to investigate the non-primitive
words that appear in the language u+�v+, where u and v are primitive words. In particular,
we are interested to investigate the exponents of the powers that appear in u+� v+.

Let us introduce further notation. Let us denote by Q the set of primitive words. For
u, v, w ∈ Q, let p(u, v, w) be the integer k such that

u∗� v∗ ∩ w∗ = (wk)∗.

Remark that, if u∗ � v∗ ∩ w∗ = {ǫ}, then p(u, v, w) = 0. For u, v ∈ Q, let us define the
set of integers

P (u, v) = {p(u, v, w)| w ∈ Q}.

For instance, if we consider the words u = a10b, v = b, then P (u, v) = {0, 1, 2, 5, 10}.

The following problem is closely related to Problem 3.

Problem 4 : Given two primitive words u, v, characterize the set P (u, v) in terms of the
combinatorial properties of u and v.
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